搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实验观测液滴撞击倾斜表面液膜的特殊现象

梁刚涛 沈胜强 郭亚丽 陈觉先 于欢 李熠桥

引用本文:
Citation:

实验观测液滴撞击倾斜表面液膜的特殊现象

梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥

Special phenomena of droplet impact on an inclined wetted surface with experimental observation

Liang Gang-Tao, Shen Sheng-Qiang, Guo Ya-Li, Chen Jue-Xian, Yu Huan, Li Yi-Qiao
PDF
导出引用
  • 采用高速摄像仪以10000帧/s 的拍摄速度对液滴撞击倾斜表面液膜的过程进行了实验观测, 分析了液滴撞击倾斜表面液膜后的铺展、水花形成以及飞溅等现象, 考察了撞击角对液滴震荡变形过程的影响; 在此基础上, 定量讨论了液滴铺展速度随时间的变化规律, 揭示了液滴撞击速度和撞击角对前、后铺展因子及初始铺展速度的影响.观测发现, 在撞击角为28.0°–74.7°范围内, 随着撞击角的减小, 液滴在液膜表面的震荡变形程度增大; 前铺展因子随撞击速度的增大而增大, 随撞击角的减小而增大; 后铺展因子随撞击速度的增大几乎不发生变化, 但是随撞击角的增大而增大; 液滴初始铺展速度随撞击速度和撞击角的升高而增大.
    The phenomena of droplet impact on an inclined solid surface covered with a pre-existing liquid film are observed using high speed camera at 10000 frames per second. The processes of droplet spreading, liquid sheet formation, splashing and droplet oscillation are observed and analyzed. From the results the relationship between spreading velocity and time is discussed quantitatively. Besides, the effects of impact velocity and impact angle on front and back spreading factors and initiatory spreading velocity are also revealed. At the impact angles ranging from 28.0° to 74.7°, it is found that with the decrease of impact angle, the deformation degree of the droplet oscillation on the film surface increases. The results also indicate that the front spreading factor can increases by increasing impact velocity or by reducing the impact angle, whereas the back spreading factor increases with impact angle increasing. The impact velocity almost has no influence on it. The initial spreading velocity can increase by increasing the impact velocity and the impact angle.
    • 基金项目: 国家自然科学基金(批准号:51176017, 50976016)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51176017, 50976016).
    [1]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 61 184702]

    [2]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [3]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [4]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159

    [5]

    Cossali G E, Coghe A, Marengo M 1997 Exp. Fluids 22 463

    [6]

    Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 33

    [7]

    Motzkus C, Gensdarmes F, Géhin E 2009 J. Aerosol. Sci. 40 680

    [8]

    Okawa T, Shiraishi T, Mori T 2006 Exp. Fluids 41 965

    [9]

    Rioboo R, Bauthier C, Conti J, Voué M, De Coninck J 2003 Exp. Fluids 35 648

    [10]

    Shi Z, Yan Y, Yang F, Qian Y, Hu G 2008 J. Hydrodynamics B 20 267

    [11]

    Liang G T, Shen S Q, Yang Y 2012 J. Therm. Sci. Technol. 11 8 (in Chinese) [梁刚涛, 沈胜强, 杨勇 2012 热科学与技术 11 8]

    [12]

    Wang A B, Chen C C 2000 Phys. Fluids 12 2155

    [13]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 59 2601]

    [14]

    Šikalo Š, Tropea C, Ganić E N 2005 J. Colloid Interf. Sci. 286 661

    [15]

    Šikalo Š, Ganić E N 2006 Exp. Therm. Fluid Sci. 31 97

    [16]

    Lunkad S F, Buwa V V, Nigam K D P 2007 Chem. Eng. Sci. 62 7214

    [17]

    Shen S Q, Cui Y Y, Guo Y L 2009 J. Therm. Sci. Technol. 8 194 (in Chinese) [沈胜强, 崔艳艳, 郭亚丽 2009 热科学与技术 8 194]

    [18]

    Lu J J, Chen X L, Cao X K, Liu H F, Yu Z H 2007 Chem. React. Eng. Technol. 23 505 (in Chinese) [陆军军, 陈雪莉, 曹显奎, 刘海峰, 于遵宏 2007 化学反应工程与工艺 23 505]

    [19]

    Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112

    [20]

    Stow C D, Hadfield M G 1981 P. Roy. Soc. A Math. Phys. Sci. 373 419

    [21]

    Mundo C, Sommerfeld M, Tropea C 1995 Int. J. Multiphase. Flow 21 151

  • [1]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 61 184702]

    [2]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [3]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [4]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159

    [5]

    Cossali G E, Coghe A, Marengo M 1997 Exp. Fluids 22 463

    [6]

    Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 33

    [7]

    Motzkus C, Gensdarmes F, Géhin E 2009 J. Aerosol. Sci. 40 680

    [8]

    Okawa T, Shiraishi T, Mori T 2006 Exp. Fluids 41 965

    [9]

    Rioboo R, Bauthier C, Conti J, Voué M, De Coninck J 2003 Exp. Fluids 35 648

    [10]

    Shi Z, Yan Y, Yang F, Qian Y, Hu G 2008 J. Hydrodynamics B 20 267

    [11]

    Liang G T, Shen S Q, Yang Y 2012 J. Therm. Sci. Technol. 11 8 (in Chinese) [梁刚涛, 沈胜强, 杨勇 2012 热科学与技术 11 8]

    [12]

    Wang A B, Chen C C 2000 Phys. Fluids 12 2155

    [13]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 59 2601]

    [14]

    Šikalo Š, Tropea C, Ganić E N 2005 J. Colloid Interf. Sci. 286 661

    [15]

    Šikalo Š, Ganić E N 2006 Exp. Therm. Fluid Sci. 31 97

    [16]

    Lunkad S F, Buwa V V, Nigam K D P 2007 Chem. Eng. Sci. 62 7214

    [17]

    Shen S Q, Cui Y Y, Guo Y L 2009 J. Therm. Sci. Technol. 8 194 (in Chinese) [沈胜强, 崔艳艳, 郭亚丽 2009 热科学与技术 8 194]

    [18]

    Lu J J, Chen X L, Cao X K, Liu H F, Yu Z H 2007 Chem. React. Eng. Technol. 23 505 (in Chinese) [陆军军, 陈雪莉, 曹显奎, 刘海峰, 于遵宏 2007 化学反应工程与工艺 23 505]

    [19]

    Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112

    [20]

    Stow C D, Hadfield M G 1981 P. Roy. Soc. A Math. Phys. Sci. 373 419

    [21]

    Mundo C, Sommerfeld M, Tropea C 1995 Int. J. Multiphase. Flow 21 151

  • [1] 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究.  , 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [2] 赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人. 基于Marangoni效应的液-液驱动铺展过程.  , 2021, 70(18): 184701. doi: 10.7498/aps.70.20210485
    [3] 春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎. 液滴撞击超亲水表面的最大铺展直径预测模型.  , 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [4] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究.  , 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [5] 赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪. 液氮滴撞击壁面相变行为的数值研究.  , 2019, 68(24): 244401. doi: 10.7498/aps.68.20190945
    [6] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间.  , 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [7] 焦云龙, 刘小君, 逄明华, 刘焜. 固体表面液滴铺展与润湿接触线的移动分析.  , 2016, 65(1): 016801. doi: 10.7498/aps.65.016801
    [8] 叶学民, 李永康, 李春曦. 受热基底上的液滴铺展及换热特性.  , 2016, 65(23): 234701. doi: 10.7498/aps.65.234701
    [9] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [10] 李春曦, 陈朋强, 叶学民. 含活性剂液滴在倾斜粗糙壁面上的铺展稳定性.  , 2015, 64(1): 014702. doi: 10.7498/aps.64.014702
    [11] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究.  , 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [12] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究.  , 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [13] 戴剑锋, 樊学萍, 蒙波, 刘骥飞. 单液滴撞击倾斜液膜飞溅过程的耦合Level Set-VOF模拟.  , 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [14] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性.  , 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [15] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [16] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性.  , 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [17] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟.  , 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [18] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析.  , 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [19] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析.  , 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [20] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究.  , 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
计量
  • 文章访问数:  7679
  • PDF下载量:  1051
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-09
  • 修回日期:  2012-11-01
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map