搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究

谭瑞山 刘新国 胡梅

引用本文:
Citation:

Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究

谭瑞山, 刘新国, 胡梅

Stereodynamics study of Li+HF (v = 0–3,j = 0)→LiF+H reaction

Tan Rui-Shan, Liu Xin-Guo, Hu Mei
PDF
导出引用
  • 基于2003年Alfredo Aguado 等人构造的新势能面(Aguado和Paniagua. J. Chem. Phys., Vol. 119, No. 19, 2003), 本文结合振动激发和碰撞能两个因素,采用准经典轨线的方法对反应Li+HF(v=0–3) 的k-j' 两矢量相关和k-k'-j'三矢量相关的分布函数及极化微分反应截面进行了详细的立体动力学研究. 结果表明, 描述三原子分子反应的k-j'两矢量相关联的函数P(θr)分布不受振动激发影响, 而碰撞能则对其影响较大. 描述 k-k'-j'三矢量相关的函数P(φr)分布和极化微分反应截面对振动激发较敏感, 同时我们发现碰撞能对P(φr)分布和极化微分反应截面也有较大影响.
    The detailed stereodynamics of the reaction Li+HF(v=0–3) with different collision energy and in different vibration-excited state has been carried out by using the quasi-classical trajectory (QCT) method based on a new potential energy surface constructed by Aguado and Pariagua (Aguado and Paniagua J. Chem. Phys., Vol. 119, No. 19, 2003). The correlated k-j', k-k'-j' angular distributions and the polarization-dependent differential cross sections (PDDCSs) are discussed in detail. The results indicate that the collision energy has more impact on the P(θr) distributions describing the k-j' correlation than the vibration excitation. The distributions of P(φr) describing the k-k'-j' correlation, as well as the polarization-dependent generalized differential cross-sections, are sensitive to the vibration excitation. Meanwhile, the collision energy also has more influence on them.
    • 基金项目: 国家自然科学基金 (批准号: 11274205, 11274206) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274205, 11274206).
    [1]

    Xu W W, Liu X G, Luan S X, Sun S S, Zhang Q G 2009 Chin. Phys. B 18 339

    [2]

    Liu X G, Sun H Z, Liu H R, Zhang Q G 2010 Acta Phys. Sin. 59 779 (in Chinese) [刘新国, 孙海竹, 刘会荣, 张庆刚 2010 59 779]

    [3]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [4]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [5]

    Xu W W, Liu X G, Luan S X, Zhang Q G 2009 Chem. Phys. 355 21

    [6]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]

    [7]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [8]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [9]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [10]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [11]

    Hobel O, Paladini A, Russo A, Bobbenkamp R, Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198

    [12]

    Herschbach D R 1996 Adv. Chem. Phys. 10 319

    [13]

    Odiorne T J, Brooks P R, Kasper J V V 1971 J. Chem. Phys. 55 1980

    [14]

    Pruett J G, Zare R N 1976 J. Chem. Phys. 64 1774

    [15]

    Karny Z, Estler R C, Zare R N 1978 J. Chem. Phys. 69 5199

    [16]

    Karny Z , Zare R N 1978 J. Chem. Phys. 68 3360

    [17]

    Bartoszek F E, Blackwell B A, Polanyi J C, Sloan J J 1981 J. Chem. Phys. 74 3400

    [18]

    Zhang R, Rakestraw D J, McKendrick K G, Zare R N 1988 J. Chem. Phys. 89 6283

    [19]

    Hoffmeister M, Schleysing R, Stienkemeier F, Loesch H J 1989 J. Chem. Phys. 90 3528

    [20]

    Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265

    [21]

    Suarez C, Aguado A, Tablero C, Paniagua M 1994 Int. J. Quantum Chem. 52 935

    [22]

    Becker C H, Casavecchia P, Tiedemann P W, Valentini J J, Lee Y T 1980 J. Chem. Phys. 73 2833

    [23]

    Aguado A, Sufirez C, Paniagua M 1995 Chem. Phys. 201 107

    [24]

    Aguado A, Paniagua M 1997 J. Chem. Phys. 106 1013

    [25]

    Yuan M H Zhao G J 2010 Int J Quantum Chem 110 1842

    [26]

    Wang T Yue X F 2011 Chin. Phys. Lett. 28 023101

    [27]

    Jasper A W, Hack M D, Truhlar D G 2002 J. Chem. Phys. 116 8353

    [28]

    Aguado A, Paniagua M 2003 J. Chem. Phys. 119 10088

    [29]

    Aoiz F J, Brouard M, Herrero V J, SaezRabanos V, Stark K 1997 Chem. Phys. Lett. 264 487

    [30]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [31]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

    [32]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [33]

    Ma J J, Chen M D, Cong S L, Han K L 2006 Chem. Phys. 327 529

    [34]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [35]

    Li W L, Wang M S, Yang C L , Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [36]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [37]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [38]

    Zhang X, Han K L 2006Int. Quantum Chem. 106 1815

    [39]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [40]

    Han K L, He G Z, Lou N Q 1989 Chin. J. Chem. Phys. 2 323

    [41]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [42]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

  • [1]

    Xu W W, Liu X G, Luan S X, Sun S S, Zhang Q G 2009 Chin. Phys. B 18 339

    [2]

    Liu X G, Sun H Z, Liu H R, Zhang Q G 2010 Acta Phys. Sin. 59 779 (in Chinese) [刘新国, 孙海竹, 刘会荣, 张庆刚 2010 59 779]

    [3]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [4]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [5]

    Xu W W, Liu X G, Luan S X, Zhang Q G 2009 Chem. Phys. 355 21

    [6]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]

    [7]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [8]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [9]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [10]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [11]

    Hobel O, Paladini A, Russo A, Bobbenkamp R, Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198

    [12]

    Herschbach D R 1996 Adv. Chem. Phys. 10 319

    [13]

    Odiorne T J, Brooks P R, Kasper J V V 1971 J. Chem. Phys. 55 1980

    [14]

    Pruett J G, Zare R N 1976 J. Chem. Phys. 64 1774

    [15]

    Karny Z, Estler R C, Zare R N 1978 J. Chem. Phys. 69 5199

    [16]

    Karny Z , Zare R N 1978 J. Chem. Phys. 68 3360

    [17]

    Bartoszek F E, Blackwell B A, Polanyi J C, Sloan J J 1981 J. Chem. Phys. 74 3400

    [18]

    Zhang R, Rakestraw D J, McKendrick K G, Zare R N 1988 J. Chem. Phys. 89 6283

    [19]

    Hoffmeister M, Schleysing R, Stienkemeier F, Loesch H J 1989 J. Chem. Phys. 90 3528

    [20]

    Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265

    [21]

    Suarez C, Aguado A, Tablero C, Paniagua M 1994 Int. J. Quantum Chem. 52 935

    [22]

    Becker C H, Casavecchia P, Tiedemann P W, Valentini J J, Lee Y T 1980 J. Chem. Phys. 73 2833

    [23]

    Aguado A, Sufirez C, Paniagua M 1995 Chem. Phys. 201 107

    [24]

    Aguado A, Paniagua M 1997 J. Chem. Phys. 106 1013

    [25]

    Yuan M H Zhao G J 2010 Int J Quantum Chem 110 1842

    [26]

    Wang T Yue X F 2011 Chin. Phys. Lett. 28 023101

    [27]

    Jasper A W, Hack M D, Truhlar D G 2002 J. Chem. Phys. 116 8353

    [28]

    Aguado A, Paniagua M 2003 J. Chem. Phys. 119 10088

    [29]

    Aoiz F J, Brouard M, Herrero V J, SaezRabanos V, Stark K 1997 Chem. Phys. Lett. 264 487

    [30]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [31]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

    [32]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [33]

    Ma J J, Chen M D, Cong S L, Han K L 2006 Chem. Phys. 327 529

    [34]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [35]

    Li W L, Wang M S, Yang C L , Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [36]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [37]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [38]

    Zhang X, Han K L 2006Int. Quantum Chem. 106 1815

    [39]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [40]

    Han K L, He G Z, Lou N Q 1989 Chin. J. Chem. Phys. 2 323

    [41]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [42]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

  • [1] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响.  , 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [2] 唐晓平, 和小虎, 周灿华, 杨阳. 反应物分子初始振动激发对H+CH+C++H2反应的影响.  , 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [3] 魏强. 基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质.  , 2015, 64(17): 173401. doi: 10.7498/aps.64.173401
    [4] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响.  , 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应.  , 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [6] 许雪松, 杨鲲, 孙佳石, 尹淑慧. O+DCl→OD+Cl反应的动力学性质研究.  , 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [7] 马建军. 碰撞能对反应Sr+CH3I→SrI+CH3的立体动力学影响.  , 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [8] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响.  , 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [9] 徐峰, 郑雨军. 量子相空间纠缠轨线力学.  , 2013, 62(21): 213401. doi: 10.7498/aps.62.213401
    [10] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质.  , 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [11] 马建军. 反应物NO的转动激发对反应N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P)影响的立体动力学研究.  , 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [12] 李红, 郑斌, 孟庆田. 转动激发对O+HBrOH+Br反应的立体动力学性质的准经典轨线理论研究.  , 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [13] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响.  , 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [14] 王平. C+OH(v=0—3, j=0—3)→CO+H反应的准经典轨线研究.  , 2011, 60(5): 053401. doi: 10.7498/aps.60.053401
    [15] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究.  , 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [16] 许雪松, 张文芹, 金坤, 尹淑慧. 反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响.  , 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [17] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究.  , 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [18] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究.  , 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [19] 武连文, 程乾生. 关于动力学互相关因子指数的注记.  , 2005, 54(7): 3027-3028. doi: 10.7498/aps.54.3027
    [20] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究.  , 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
计量
  • 文章访问数:  6717
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-10
  • 修回日期:  2012-11-21
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map