-
利用基于密度泛函理论的第一性原理方法, 系统研究了石墨烯纳米带(GNRs)电学性质的扭曲效应. 结果表明: 锯齿型石墨纳米带(ZGNRs)的带隙对扭曲形变最不敏感, 在扭曲过程中几乎保持金属性不变, 其次是W=3p-1型扶手椅型石墨烯纳米带(AGNRs), 扭曲时带隙也只有较小的变化. W=3p+1型AGNRs的带隙对扭曲最为敏感, 扭曲发生时, 呈现宽带隙半导体、中等带隙半导体、准金属、金属的变化, 其次是W=3p型AGNRs, 扭曲时带隙变化也较为明显. 换言之, GNRs在无扭曲时带隙越大, 扭曲发生后带隙变化(变小)越明显. 对于整个电子结构及透射系数来说, 扭曲对AGNRs影响较大, 而对ZGNRs的影响相对小些. 研究表明: 由于石墨烯容易变形, 其相关电子器件的设计必须适当考虑扭曲对电学性质的影响.By using the first-principles method based on the density-functional theory, twisting- deformation-dependent electrical characteristics of graphene nanoribbons (GNRs) are studied systematically. It is shown that the energy gap of the zigzag-edge graphene nanoribbon (ZGNR) is the most insensitive to twisting deformation, and it almost keeps metallicity unchanged, next is the armchair-edge graphene nanoribbons (AGNRs) by width W=3p-1 (p is a positive integer), and its gap has only a small change when twisting deformation occurs. However, the gap of AGNR with width W=3p+1 is extremely sensitive to twisting deformation, and it can display a variation from wide-gap semiconductor to moderate-gap semiconductor, quasi-metal, and metal, next is AGNR with W=3p. In other words, the larger the band gap for GNR in the absence of twisting deformation, the more significant the change (becoming small) of its band gap with twisting deformation. Additionally, for the whole electronic structure and transmission behavior, one can find that there is a much larger influence under twisting deformation in AGNR than in ZGNR. These studies suggest that it is necessary to take the effect of twisting deformation on the electrical characteristics into account in designing GNR-based nanodevices.
-
Keywords:
- graphene nanoribbon /
- energy band structure /
- twisting deformation /
- density- functional theory
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Berger C, Song Z M, Li X B, Wu X S, Brown N, Didier M, Li T B, Joanna H, Alexei N, Edward H C, Phillip N F, Walt de Heer A 2006 Science 312 1191
[3] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
[4] Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C, Mammana V P 2004 Appl. Phys. Lett. 85 1265
[5] Yuan J M, Mao Y L 2011 Acta Phys. Sin. 60 103103 (in Chinese) [袁健美, 毛宇亮 2011 60 103103]
[6] Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]
[7] Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606
[8] Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501
[9] Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[10] Son Y, Cohen M L, Louie S G 2006 Nature 444 347
[11] Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]
[12] Ouyang F P, Xiao J, Guo R, Zhang H, Xu H 2009 Nanotechnology 20 055202
[13] Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502
[14] Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704
[15] Sadrzadeh A, Hua M, Boris I Y 2011 Appl. Phys. Lett. 99 013102
[16] Zhu L Y, Wang J L, Zhang T T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494
[17] Zheng X H, Song L L Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129
[18] Huang Y, Wu J, Hwang K C 2006 Phys. Rev. B 74 245413
[19] Xu Z, Buehler M J 2010 ACS Nano 4 3869
[20] Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501
[21] Bets K V, Yakobson B I 2009 Nano Res. 2 161166
[22] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[23] Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[24] Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Berger C, Song Z M, Li X B, Wu X S, Brown N, Didier M, Li T B, Joanna H, Alexei N, Edward H C, Phillip N F, Walt de Heer A 2006 Science 312 1191
[3] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
[4] Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C, Mammana V P 2004 Appl. Phys. Lett. 85 1265
[5] Yuan J M, Mao Y L 2011 Acta Phys. Sin. 60 103103 (in Chinese) [袁健美, 毛宇亮 2011 60 103103]
[6] Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]
[7] Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606
[8] Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501
[9] Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[10] Son Y, Cohen M L, Louie S G 2006 Nature 444 347
[11] Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 58 4132]
[12] Ouyang F P, Xiao J, Guo R, Zhang H, Xu H 2009 Nanotechnology 20 055202
[13] Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502
[14] Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704
[15] Sadrzadeh A, Hua M, Boris I Y 2011 Appl. Phys. Lett. 99 013102
[16] Zhu L Y, Wang J L, Zhang T T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494
[17] Zheng X H, Song L L Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129
[18] Huang Y, Wu J, Hwang K C 2006 Phys. Rev. B 74 245413
[19] Xu Z, Buehler M J 2010 ACS Nano 4 3869
[20] Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501
[21] Bets K V, Yakobson B I 2009 Nano Res. 2 161166
[22] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[23] Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[24] Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
计量
- 文章访问数: 7786
- PDF下载量: 1555
- 被引次数: 0