-
采用分子动力学方法和镶嵌原子势, 模拟了4000个Cu原子和13500个Cu原子(简称Cu4000和Cu13500)组成的纳米颗粒以及块体Cu的等温晶化过程. 通过对这些颗粒在晶化过程中结构和动力学行为的分析研究, 发现低温时, 不同尺寸的纳米Cu颗粒均出现多步晶化, 且晶化时间的分布曲线远比高温时范围大; 除了温度, 颗粒尺寸对晶化行为也有重要的影响, 尺寸越大, 晶化时间越长, 最终的晶化程度越高; 但是晶化时间随尺寸增大而增加的趋势不会一直持续, 发现存在一个临界尺寸rc, 小于rc时, 晶化时间随颗粒尺寸增大而增加, 大于rc时,晶化时间随尺寸增大而减小.We investigate the isothermal crystallizations of nanoparticles composed, respectively, of 4000 Cu atoms (Cu4000) and 13500 Cu atoms (Cu13500), and bulk Cu according to on embedded atom model, using molecular dynamics simulations. We note that different sizes of Cu nanoparticles display multistep crystallization at low temperature, and their crystallization time distribution is wider than at high temperature, shown by analyzing the structural and dynamic properties of isothermal crystallization. Moreover, the size of particle plays an important role in the crystallization process. The larger the size, the longer the crystallization time is. However, we find that there is a critical size rc. The crystallization time increases with particle size increasing when the size is less than rc. On the contrary, when the size is more than rc, the crystallization time decreases with particle size increasing.
-
Keywords:
- molecular dynamics simulation /
- Cu nanocluster /
- isothermal crystallization /
- critical size
[1] Chen N, Frank R 2011 Acta Mater. 59 6433
[2] Jang D C, J R Greer 2010 Nat. Mater. 9 215
[3] Merikanto J 2007 Phys. Rev. Lett. 98 145702
[4] Nam H S 2002 Phys. Rev. Lett. 89 275502
[5] Song H J, X H Li 2006 Chin. J. Chem. 24 273
[6] Qi Y 2001 J. Chem. Phys. 115 385
[7] Yang Q W, Zhu R Z 2005 Acta Phys. Sin. 54 4245 (in Chinese) [杨全文, 朱如曾 2005 54 4245]
[8] Chui Y H, I K Snook 2007 Phys. Rev. B 76 195427
[9] Sutter P W, Sutter E A 2007 Nat. Mater. 6 363
[10] Chui Y H 2006 J. Chem. Phys. 125 114703
[11] Chen Q, Sun M H 2012 Acta Phys. Sin. 61 146101 (in Chinese) [陈青, 孙民华 2012 61 146101]
[12] Qi W, Wang M 2004 Mater. Chem. Phys. 88 280
[13] Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518
[14] Yang Q W, Zhu R Z 2005 Acta Phys. Sin. 54 89 (in Chinese) [杨全文, 朱如曾 2005 54 89]
[15] Wen Y H, Zhang Y 2009 Acta Phys. Sin. 58 2585 (in Chinese) [文玉华, 张杨 2009 58 2585]
-
[1] Chen N, Frank R 2011 Acta Mater. 59 6433
[2] Jang D C, J R Greer 2010 Nat. Mater. 9 215
[3] Merikanto J 2007 Phys. Rev. Lett. 98 145702
[4] Nam H S 2002 Phys. Rev. Lett. 89 275502
[5] Song H J, X H Li 2006 Chin. J. Chem. 24 273
[6] Qi Y 2001 J. Chem. Phys. 115 385
[7] Yang Q W, Zhu R Z 2005 Acta Phys. Sin. 54 4245 (in Chinese) [杨全文, 朱如曾 2005 54 4245]
[8] Chui Y H, I K Snook 2007 Phys. Rev. B 76 195427
[9] Sutter P W, Sutter E A 2007 Nat. Mater. 6 363
[10] Chui Y H 2006 J. Chem. Phys. 125 114703
[11] Chen Q, Sun M H 2012 Acta Phys. Sin. 61 146101 (in Chinese) [陈青, 孙民华 2012 61 146101]
[12] Qi W, Wang M 2004 Mater. Chem. Phys. 88 280
[13] Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518
[14] Yang Q W, Zhu R Z 2005 Acta Phys. Sin. 54 89 (in Chinese) [杨全文, 朱如曾 2005 54 89]
[15] Wen Y H, Zhang Y 2009 Acta Phys. Sin. 58 2585 (in Chinese) [文玉华, 张杨 2009 58 2585]
计量
- 文章访问数: 7619
- PDF下载量: 760
- 被引次数: 0