搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究

李相贤 高闽光 徐亮 童晶晶 魏秀丽 冯明春 金岭 王亚萍 石建国

引用本文:
Citation:

基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究

李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国

Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy

Li Xiang-Xian, Gao Min-Guang, Xu Liang, Tong Jing-Jing, Wei Xiu-Li, Feng Ming-Chun, Jin Ling, Wang Ya-Ping, Shi Jian-Guo
PDF
导出引用
  • 介绍了基于傅里叶变换红外技术检测CO2气体碳同位素比的新方法, 详细介绍了如何从HITRAN红外数据库中提取气体标准吸收截面; 介绍了基于非线性最小二乘法反演CO2气体碳同位素比和整套实验装置的组成及实验步骤. 从理论和实验分析两方面讨论了温度和气压变化对δ13CO2值的影响规律. 对于同一CO2标准气体, 采用FTIR和同位素质谱法两种技术进行了δ13CO2值对比检测, 两种测量技术的平均值差异仅为0.25%. 从实验结果可以看出, FTIR技术可以实现对CO2气体碳同位素比的检测.
    A new method to detect carbon isotope ratio of carbon dioxide is presented, which is developed based on Fourier transform infrared spectroscopy (FTIR)technique. The method to obtain the absorption coefficient from HITRAN is introduced in detail. The nonlinear least square algorithm to determine δ13CO2 value is studied. The total system and experimental procedure are shown in the paper. The temperature and pressure effect on δ13CO2 value determination are analyzed from both theory and experiment analysis. For the same CO2 standard gas, the δ13CO2 value is detected by both FTIR and IRMS technology, and the results are also comparatively analyzed and discussed. The difference in mean between both methods is only 0.25%. The experimental results show that the FTIR technique to detect carbon isotope ratio of carbon dioxide is viable.
    • 基金项目: 国家自然科学基金(批准号: 41105022, 40905011)和中国科学院知识创新工程重要方向项目(批准号: Y022091131)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41105022, 40905011), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y022091131).
    [1]

    Esler M B, Griffith D WT, Wilson S R, Steele L P 2000 Anal. Chem. 72 216

    [2]

    Yakir D, Silveira L da, Sternberg L 2000 Oecologia 123 297

    [3]

    Oppenheimer C, Francis P, Burton M, Maciejewski A J H, Boardman L 1998 Appl. Phys. B 67 505

    [4]

    Castrillo A, Casa G, Burgel V M, Tedesco D, Gianfrani L 2004 Opt. Express 12 6515

    [5]

    Richter D, Erdelyi M, Curl R F, Tittel F K, Oppenheimer C, Duffell H J, Burton M 2002 Opt. Lasers Eng. 37 171

    [6]

    Amorim L C A, Carneiro J P, Cardeal Z L2008 Journal of Chromatography B 865 141

    [7]

    Cao Y C, Sun G Q, Han Y, Sun D L, Wang X 2008 Acta Pedologica Sinica 45 249 (in Chinese) [曹亚澄, 孙国庆, 韩勇, 孙德玲, 王曦 2008 土壤学报 45 249]

    [8]

    Jäger F, Wagner G, Meijer H A J, Kerstel E R T 2005 Isotopes in Environmental and Health Studies 41 373

    [9]

    Castrillo A, Casa G, Palmieri A, Gianfrani L 2006 Isotopes in Environmental and Health Studies 42 47

    [10]

    Saleska S R, Shorter J H, Herndon S, Jimenez R, Mcmanus, J B, Munger J W, Nelson D D, Zahniser M S 2006 Isotopes in Environmental and Health Studies 42 115

    [11]

    Bowling D R, Sargent S D, Tanner B D, Ehleringer J R 2003 Agr. Forest Meteorol. 118 1

    [12]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L, Jin L, Wang Y P, Chen J 2010 Acta Phys. Sin. 59 5397 (in Chinese) [刘志明, 刘文清, 高闽光, 童晶晶, 张天舒, 徐亮, 魏秀丽, 金岭, 王亚萍, 陈军 2010 59 5397]

    [13]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184

    [14]

    Wu J G 1994 Techniques and Applications of Modern Fourier Transform Infrared Spectroscopy (Vol. 1) (Beijing: Science and Technology Literature Press) p156 (in Chinese) [吴瑾光 1994 近代傅里叶变换红外光谱技术与应用(上卷) (北京: 科学技术文献出版社) 第156页]

    [15]

    Zhang S, Li Y X, Ma Q Y, Xu X W, Niu P J, Li Y Z, Niu S L, Li H T 2005 Acta Phys. Sin. 54 2256] (in Chinese) [张帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛 2005 54 2256]

    [16]

    Werner R A, Brand W A 2001 Rapid Commun. Mass Spectrom. 15 501

    [17]

    Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Carleer M R, Chackerian C, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 Journal of Quantitative Spectroscopy & Radiative Transfer 96 139

    [18]

    Verdes C L, Engeln A V, Buehler S A, Perrin A 2005 Journal of Quantitative Spectroscopy & Radiative Transfer 90 217

    [19]

    Perrin M Y, Soufiani A 2007 Journal of Quantitative Spectroscopy & Radiative Transfer 103 2697

    [20]

    Mohn J, Werner R A, Buchmann B, Emmenegger L 2007 Molecular Structure 834 95

  • [1]

    Esler M B, Griffith D WT, Wilson S R, Steele L P 2000 Anal. Chem. 72 216

    [2]

    Yakir D, Silveira L da, Sternberg L 2000 Oecologia 123 297

    [3]

    Oppenheimer C, Francis P, Burton M, Maciejewski A J H, Boardman L 1998 Appl. Phys. B 67 505

    [4]

    Castrillo A, Casa G, Burgel V M, Tedesco D, Gianfrani L 2004 Opt. Express 12 6515

    [5]

    Richter D, Erdelyi M, Curl R F, Tittel F K, Oppenheimer C, Duffell H J, Burton M 2002 Opt. Lasers Eng. 37 171

    [6]

    Amorim L C A, Carneiro J P, Cardeal Z L2008 Journal of Chromatography B 865 141

    [7]

    Cao Y C, Sun G Q, Han Y, Sun D L, Wang X 2008 Acta Pedologica Sinica 45 249 (in Chinese) [曹亚澄, 孙国庆, 韩勇, 孙德玲, 王曦 2008 土壤学报 45 249]

    [8]

    Jäger F, Wagner G, Meijer H A J, Kerstel E R T 2005 Isotopes in Environmental and Health Studies 41 373

    [9]

    Castrillo A, Casa G, Palmieri A, Gianfrani L 2006 Isotopes in Environmental and Health Studies 42 47

    [10]

    Saleska S R, Shorter J H, Herndon S, Jimenez R, Mcmanus, J B, Munger J W, Nelson D D, Zahniser M S 2006 Isotopes in Environmental and Health Studies 42 115

    [11]

    Bowling D R, Sargent S D, Tanner B D, Ehleringer J R 2003 Agr. Forest Meteorol. 118 1

    [12]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L, Jin L, Wang Y P, Chen J 2010 Acta Phys. Sin. 59 5397 (in Chinese) [刘志明, 刘文清, 高闽光, 童晶晶, 张天舒, 徐亮, 魏秀丽, 金岭, 王亚萍, 陈军 2010 59 5397]

    [13]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184

    [14]

    Wu J G 1994 Techniques and Applications of Modern Fourier Transform Infrared Spectroscopy (Vol. 1) (Beijing: Science and Technology Literature Press) p156 (in Chinese) [吴瑾光 1994 近代傅里叶变换红外光谱技术与应用(上卷) (北京: 科学技术文献出版社) 第156页]

    [15]

    Zhang S, Li Y X, Ma Q Y, Xu X W, Niu P J, Li Y Z, Niu S L, Li H T 2005 Acta Phys. Sin. 54 2256] (in Chinese) [张帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛 2005 54 2256]

    [16]

    Werner R A, Brand W A 2001 Rapid Commun. Mass Spectrom. 15 501

    [17]

    Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Carleer M R, Chackerian C, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 Journal of Quantitative Spectroscopy & Radiative Transfer 96 139

    [18]

    Verdes C L, Engeln A V, Buehler S A, Perrin A 2005 Journal of Quantitative Spectroscopy & Radiative Transfer 90 217

    [19]

    Perrin M Y, Soufiani A 2007 Journal of Quantitative Spectroscopy & Radiative Transfer 103 2697

    [20]

    Mohn J, Werner R A, Buchmann B, Emmenegger L 2007 Molecular Structure 834 95

  • [1] 王松, 周闯, 李素文, 牟福生. 基于法布里-珀罗干涉仪测量大气环境CO2的方法.  , 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] 胡运优, 徐亮, 沈先春, 束胜全, 徐睆垚, 邓亚颂, 徐寒扬, 刘建国, 刘文清. 基于大气廓线合成背景的目标气云透过率反演.  , 2023, 72(3): 033201. doi: 10.7498/aps.72.20221670
    [3] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究.  , 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [4] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度.  , 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [5] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析.  , 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [6] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析.  , 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [7] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值.  , 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [8] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽. 基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究.  , 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [9] 张博, 张春峰, 李希友, 王睿, 肖敏. 单线态分裂的超快光谱学研究.  , 2015, 64(9): 094210. doi: 10.7498/aps.64.094210
    [10] 李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清. 温室气体及碳同位素比值红外光谱反演精度的影响因素研究.  , 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [11] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法.  , 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [12] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽. 污染气体扫描成像红外被动遥测系统实时数据处理研究.  , 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [13] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究.  , 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [14] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度.  , 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [15] 李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春. CO2及其碳同位素比值高精度检测研究.  , 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [16] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究.  , 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [17] 刘志明, 刘文清, 高闽光, 童晶晶, 张天舒, 徐亮, 魏秀丽, 金岭, 王亚萍, 陈军. 基于红外掩日通量法(SOF)污染源排放气体浓度时空分布反演算法研究.  , 2010, 59(8): 5397-5405. doi: 10.7498/aps.59.5397
    [18] 黄松, 辛煜, 宁兆元, 程珊华, 陆新华. 微波输入功率引起a-C∶F薄膜交联结构的增强.  , 2002, 51(11): 2635-2639. doi: 10.7498/aps.51.2635
    [19] 马洪良, 汤家镛. 142—146,148,150Nd+同位素位移的共线快离子束激光光谱学实验研究.  , 2001, 50(3): 453-456. doi: 10.7498/aps.50.453
    [20] 辛煜, 宁兆元, 甘肇强, 陆新华, 方亮, 程珊华. 不同CHF3/CH4流量比下沉积a-C∶F∶H薄膜键结构的红外分析.  , 2001, 50(12): 2492-2496. doi: 10.7498/aps.50.2492
计量
  • 文章访问数:  7473
  • PDF下载量:  1598
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-04
  • 修回日期:  2012-08-21
  • 刊出日期:  2013-02-05

/

返回文章
返回
Baidu
map