-
研究场追迹数值模拟技术在超小自聚焦光纤探头设计与分析中的应用方法. 首先, 论述场追迹的概念及其基本原理; 其次, 论述场追迹在VirtualLab软件中的实现方法; 最后, 研究超小自聚焦光纤探头在基于场追迹的物理光学软件VirtualLab中的建模与分析方法, 并进行仿真结果与实验结果的比较分析. 结果显示, 如设无芯光纤的长度为0.36 mm, 自聚焦光纤透镜的长度分别为0.10, 0.11和0.12 mm, 计算所得的工作距离分别为0.75, 0.63和0.51 mm, 光斑尺寸分别为32, 24和19 μm. 理论计算结果与实验结果符合, 表明基于场追迹的数值模拟技术是研究超小自聚焦光纤探头设计与分析方法的一个有效手段.Field-tracing based numerical simulation technique is investigated to design and analyze ultra-small self-focusing optical fiber probe. Firstly, the concept and principle of the field-tracing are described. Secondly, the method is discussed to implement the field-tracing technique in the physical optical software of VirtualLab. Finally, an ultra-small self-focusing optical fiber probe is simulated in the field-tracing based optical software of VirtualLab. In this paper, we find that under the conditions of a fiber spacer length of 0.36 mm and the self-focusing fiber lens lengths of 0.1 mm, 0.11 mm and 0.12 mm, the working distances of the probe are 0.75 mm, 0.63 mm and 0.51 mm, and the focus spot sizes are 32 μm, 24 μm and 19 μm respectively. The simulation results are in good agreement with the experimental data, showing that the field-tracing based numerical simulation technique is an effective tool for investigating ultra-small self-focusing optical fiber probe.
-
Keywords:
- field tracing /
- optical probe /
- numerical simulation technique /
- optical coherence tomography (OCT)
[1] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A 1991 Science 254 1178
[2] Guo S G, Yu L F, Sepehr A, Perez J, Su J P, Ridgway J M, Vokes D, Wong B J F, Chen Z P 2009 J. Biom. Opt. 14 014017
[3] Xie T Q, Guo S G, Chen Z P, Mukai D, Brenner M 2006 Opt. Expr. 14 3238
[4] Xie T Q, Liu G J, Kreuter K, Mahon S, Colt H, Mukai D, Peavy G M, Chen Z P, Brenner M 2009 J. Biom. Opt. 14 064045
[5] Singh J, Teo J H S, Xu Y, Premachandran C S, Chen N, Kotlanka R, Olivo M, Sheppard C J R 2008 J. Micromech. Microeng. 18 025001
[6] Aljasem K, Werber A, Seifert A, Zappe H 2008 J. Opt. A: Pure Appl. Opt. 10 044012
[7] Meemon P, Lee K S, Murali S, Rolland J 2008 Appl. Opt. 47 2452
[8] Min E J, Na J, Ryu S Y, Lee B H 2009 Opt. Lett. 34 1897
[9] Jung W, Benalcazar W, Ahmad A, Sharma U Tu H H, Boppart S A 2010 J. Biom. Opt. 15 066027
[10] Hudelist F, Nowosielski J M, Buczynski R, Waddie A J, Taghizadeh M R 2010 Opt. Lett. 35 130
[11] Hudelist F, Buczynski R, Waddie A J, Taghizadeh M R 2009 Opt. Expr. 17 3255
[12] Swanson E, Petersen C L, McNamara E, Petersen C L, McNamara E, Lamport R B, Kelly D L 2002 U.S. Patent 6 445 939 [1999-08-09]
[13] Reed W A, Yan M F, Schnitzer M J 2002 Opt. Lett. 27 1794
[14] Jafri M S, Farhang S, Tang R S, Desai N, Fishman P S, Rohwer R G, Tang C M, Schmitt J M 2005 J. Biom. Opt. 10 051603
[15] Mao Y X, Chang S D, Sherif S, Flueraru C 2007 Appl. Opt. 46 5887
[16] Mao Y X, Chang S D, Flueraru C 2010 J. Biomedical Science and Engineering, 3 7
[17] Wang C, Mao Y X, Fang C, Tang Z, Yu Y J, Qi B 2011 Opt. Eng. 50 094202
[18] Wang C, Mao Y X, Tang Z, Fang C, Yu Y J, Qi B 2011 Chin. Phys. B 20 114218
[19] Wang C, Mao Y X, Tang Z, Fang C, Yu Y J, Qi B 2011 Opt. Prec. Eng. 19 2300
[20] Wyrowski F, Kuhn M 2011 J. Modern Opt. 58 449
-
[1] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A 1991 Science 254 1178
[2] Guo S G, Yu L F, Sepehr A, Perez J, Su J P, Ridgway J M, Vokes D, Wong B J F, Chen Z P 2009 J. Biom. Opt. 14 014017
[3] Xie T Q, Guo S G, Chen Z P, Mukai D, Brenner M 2006 Opt. Expr. 14 3238
[4] Xie T Q, Liu G J, Kreuter K, Mahon S, Colt H, Mukai D, Peavy G M, Chen Z P, Brenner M 2009 J. Biom. Opt. 14 064045
[5] Singh J, Teo J H S, Xu Y, Premachandran C S, Chen N, Kotlanka R, Olivo M, Sheppard C J R 2008 J. Micromech. Microeng. 18 025001
[6] Aljasem K, Werber A, Seifert A, Zappe H 2008 J. Opt. A: Pure Appl. Opt. 10 044012
[7] Meemon P, Lee K S, Murali S, Rolland J 2008 Appl. Opt. 47 2452
[8] Min E J, Na J, Ryu S Y, Lee B H 2009 Opt. Lett. 34 1897
[9] Jung W, Benalcazar W, Ahmad A, Sharma U Tu H H, Boppart S A 2010 J. Biom. Opt. 15 066027
[10] Hudelist F, Nowosielski J M, Buczynski R, Waddie A J, Taghizadeh M R 2010 Opt. Lett. 35 130
[11] Hudelist F, Buczynski R, Waddie A J, Taghizadeh M R 2009 Opt. Expr. 17 3255
[12] Swanson E, Petersen C L, McNamara E, Petersen C L, McNamara E, Lamport R B, Kelly D L 2002 U.S. Patent 6 445 939 [1999-08-09]
[13] Reed W A, Yan M F, Schnitzer M J 2002 Opt. Lett. 27 1794
[14] Jafri M S, Farhang S, Tang R S, Desai N, Fishman P S, Rohwer R G, Tang C M, Schmitt J M 2005 J. Biom. Opt. 10 051603
[15] Mao Y X, Chang S D, Sherif S, Flueraru C 2007 Appl. Opt. 46 5887
[16] Mao Y X, Chang S D, Flueraru C 2010 J. Biomedical Science and Engineering, 3 7
[17] Wang C, Mao Y X, Fang C, Tang Z, Yu Y J, Qi B 2011 Opt. Eng. 50 094202
[18] Wang C, Mao Y X, Tang Z, Fang C, Yu Y J, Qi B 2011 Chin. Phys. B 20 114218
[19] Wang C, Mao Y X, Tang Z, Fang C, Yu Y J, Qi B 2011 Opt. Prec. Eng. 19 2300
[20] Wyrowski F, Kuhn M 2011 J. Modern Opt. 58 449
计量
- 文章访问数: 6761
- PDF下载量: 671
- 被引次数: 0