-
作为气候敏感区和生态脆弱区, 黄土高原地区的陆面物理过程受气候波动影响十分明显. 目前, 虽然对黄土高原特定气候条件下的陆面物理过程有了一定认识, 但对其随气候波动的动态变化规律认识却非常有限. 本文利用黄土高原陆面过程观测试验在陇中黄土高原榆中SACOL站5年多的观测资料, 系统分析了该地区自然植被下垫面陆面水分收支和能量平衡及地表反照率、 土壤热传导率和粗糙度长度等陆面过程参数对气候波动的响应规律, 发现陇中黄土高原自然植被下垫面的陆面过程特征及其参数对降水的气候波动十分敏感, 不仅对降水量波动响应显著, 而且与降水性质也密切相关.土壤湿度并不完全随年总降水量波动, 而是随有效降水量增加而增大; 陆面水分收支和土壤水分收支也随有效降水量波动变化明显;近地层垂直感热平流通量随年总降水量增加而减弱, 地表能量不平衡差额却随年总降水量增加而增大. 夏半年平均反照率随有效降水量增加而减小, 但全年平均地表反照率却受冬季积雪时数影响十分明显, 而且随积雪时数增加而增大;土壤热传导率和粗糙度长度均随年有效降水量增加而增加.并且, 降水量越小, 陆面过程参数对降水波动的响应就越敏感.不过, 陆面过程参数基本在荒漠气候平均值和农田气候平均值之间波动, 并没有突破气候约束, 能够用拟合关系来表示它们对降水因子波动的响应规律, 这种动态参数化关系可用来改善以往数值模拟或微气象分析时由于使用非动态陆面过程参数所带来的误差.The Loess Plateau is well known as a specific region sensitive to global climate change, and thus its land-surface process is significantly influenced by climatic fluctuation. Up to now, the land-surface physical process over the Loess Plateau has been basically understood under a specific climatic condition, but the dynamic variation regularity of land-surface process in different climatic states is still lacking in its knowledge. Utilizing the continuous five-year data collected at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) supported by the program 'the Loess Plateau Land-surface Process Experiment (LOPEX)', in this paper, we systematically analyze the regularity of responses of factors including land-surface water and energy budget as well as surface albedo and roughness to climatic fluctuation over the natural vegetation surface of Loess Plateau. The results show that the land-surface process and its relevant parameters are very sensitive to the fluctuations of annual precipitation. Besides, they respond markedly to annual rainfall amount and are also closely related to the nature of rainfall. Soil moisture fluctuales not fully with total amount of rainfall but rises with the increase of effective precipitation with which land-surface water and energy budget also vary. In addition, the vertical sensible heat advection goes up with rainfall increasing, while the trend of surface energy imbalance is opposite. The averaged albedo in summer half-year comes down with the increase of the ratio of effective precipitation to the climatic average, but yearly averaged albedo is evidently affected by the snow-accumulating winter time and rises with the increase of snow-accumulating hours. Soil thermal conductivity and surface roughness both increase with annual effective precipitation increasing to the climatic average, but they are more sensitive to the precipitation fluctuation under a low precipitation condition than under the normal precipitation condition. However, land-surface process parameters over the natural vegetable surface of Loess Plateau basically fluctuate between those of deserts and farmland, and have not yet broken the climatic restrictions. Fitting relationship is used to quantitatively reflect the regularity of response of the parameters to rainfall fluctuations so as to evidently eliminate possible bias brought to numerical models and microclimatic analysis by the previous fixed and un-dynamic changeable land-surface parameters.
-
Keywords:
- precipitation fluctuation /
- the Loess Plateau in the middle of Gansu /
- land-surface process /
- climate response
[1] Zhang Q, Huang R H, Wang S 2011 Arid Meteor. 29 133 (in Chinese) [张强, 黄荣辉, 王胜 2011干旱气象 29 133]
[2] Huang R H 2006 Adv. Earth Sci. 21 564 (in Chinese) [黄荣辉 2006 地球科学进展 21 564]
[3] Zhang Q, Hu Y Q 2000 J. Desert Res. 20 357 (in Chinese) [张强, 胡隐樵 2000中国沙漠 20 357]
[4] Zhao S C 2002 Adv. Earth Sci. 17 628 (in Chinese) [赵生才 2002 地球科学进展 17 628]
[5] Liu C Z 2004 Adv. Earth Sci. 19 115 (in Chinese) [刘春蓁2004地球科学进展 19 115]
[6] Li B, Zhang J T 2003 Acta Ecol. Sin. 23 82 (in Chinese) [李斌, 张金屯 2003 生态学报 23 82]
[7] Gao Z, Chae N, Kim J, Hong J, Choi T, Lee H 2004 J. Geophys. Res. 109 D06102
[8] Ma Y M, Kang S, Zhu L, Xu B, Tian L, Yao T 2008 Bull. Amer. Meteor. Soc. 89 1487
[9] Zhang Q, Deng Z Y 2008 Acta Ecol. Sin. 28 1210 (in Chinese) [张强, 邓振镛 2008 生态学报 28 1210]
[10] Sun B Q, Zhang Q, Dong A X, Chen S Y 2005 Adv. Earth Sci. 20 1041 (in Chinese) [孙秉强, 张强, 董安祥, 陈少勇 2005 地球科学进展 20 1041]
[11] Lin S, Wang Y R 2007 J. Desert Res. 27 502 (in Chinese) [林纾, 王毅荣 2007 中国沙漠 27 502]
[12] Zhang Q, Wang S, Zhang J, Wang R Y, Liu H Y, Li Y Y 2009 Adv. Earth Sci. 24 1185 (in Chinese) [张强, 王胜, 张杰, 王润元, 刘宏谊, 李岩瑛 2009 地球科学进展 24 1185]
[13] Zhang Q, Zeng J, Zhang L Y 2012 Sci. China D 55 1872
[14] Kimura R, Fan J, Zhang X C 2006 China Acta Oecologica 29 45
[15] Yang X G, Zhang Q, Wang R Y, Ma P L, Yang Q G, Liu H Y 2004 Plateau Meteor. 28 238 (in Chinese) [杨兴国, 张强, 王润元, 马鹏里, 杨启国, 刘宏宜 2004 高原气象 28 238]
[16] Liu Y Y, Wen J, Wei Z G 2007 Plateau Meteor. 26 928 (in Chinese) [刘远永, 文军, 韦志刚 2007 高原气象 26 928]
[17] Zhang Q, Sun Z X, Wang S 2011 Chinese J. Geophys. 54 1727 (in Chinese) [张强, 孙昭萱, 王胜 2011 地球 54 1727]
[18] Zeng J, Shen J, Zhang Q 2010 Sci. Cold and Arid Regions 2 0288
[19] Huang J P, Zhang W, Zuo J Q, Bi J R 2008 Adv. Atmos. Sci. 25 906
[20] Zuo J Q, Huang J P, Wang J M 2009 Adv. Atmos. Sci. 26 679
[21] Zhang Q, Hu X J, Wang S, Liu H Y 2009 Adv. Earth Sci. 24 363 (in Chinese) [张强, 胡向军, 王胜, 刘宏谊 2009 地球科学进展 24 363]
[22] Zhang Q, Li H Y, Zhao J H 2012 Sci. China D 55 580 doi:10.1007/ s11430-011-4220-3
[23] Zhang Q, Li H Y 2010 Acta Phys. Sin. 59 716 (in Chinese) [张强, 李宏宇 2010 59 716]
[24] Li H Y, Zhang Q, Wang S 2010 Adv. Earth Sci. 25 1070 (in Chinese) [李宏宇, 张强, 王胜 2010 地球科学进展 25 1070]
[25] Zhang Q, Huang R H 2004 J. Appl. Meteor. 43 1917
[26] Chen J Y, Wang J M, Tian G N 1993 Chin. J. Atmos. Sci. 17 21 (in Chinese) [陈家宜, 王介民, 田广宁 1993 大气科学 17 21]
[27] Zhang Q, Wang S, Wen X M, Nan Y H, Zeng J 2012 Acta Meteor. Sin. 70 128 (in Chinese) [张强, 王胜, 问晓梅, 南玉合, 曾剑 2012 气象学报 70 128]
[28] Wang S, Zhang Q 2011 Acta Phys. Sin. 60 059203 (in Chinese) [王胜, 张强 2011 60 059203]
[29] Li H Y, Zhang Q, Zhao J H 2010 Plateau Meteor. 29 1153 (in Chinese) [李宏宇, 张强, 赵建华 2010 高原气象 29 1153]
[30] Li H Y, Zhang Q, Wang C L, Yang F L, Zhao J H 2012 Acta Phys. Sin. 61 159201 (in Chinese) [李宏宇, 张强, 王春玲, 阳伏林, 赵建华 2012 61 159201]
[31] Zeng J, Zhang Q, Wang S 2011 Chinese J. Atmos. Sci. 35 483 (in Chinese) [曾剑, 张强, 王胜 2011 大气科学 35 483]
[32] Sun Z X, Zhang Q 2010 Plateau Meteor. 29 1423 (in Chinese) [孙昭萱, 张强 2010 高原气象 29 1423]
[33] Zhang Q, Wei G A, Cao X Y, Huang R H 2002 Adv. Atmos. Sci. 19 121
[34] Stull R B 1988 An Introduction to Boundary Layer Meteorology (Dordrecht: Kluwer Academic) p666
[35] Oke T R 1978 Boundary Layer Climate (New York: London Methuen and COLTD) p31
[36] Stull R B 2005 Meteorology for Scientists and Engineers (3rd Ed.) (Calif: Brooks/Cole Thomson Learning, Pacific Grove) p580
-
[1] Zhang Q, Huang R H, Wang S 2011 Arid Meteor. 29 133 (in Chinese) [张强, 黄荣辉, 王胜 2011干旱气象 29 133]
[2] Huang R H 2006 Adv. Earth Sci. 21 564 (in Chinese) [黄荣辉 2006 地球科学进展 21 564]
[3] Zhang Q, Hu Y Q 2000 J. Desert Res. 20 357 (in Chinese) [张强, 胡隐樵 2000中国沙漠 20 357]
[4] Zhao S C 2002 Adv. Earth Sci. 17 628 (in Chinese) [赵生才 2002 地球科学进展 17 628]
[5] Liu C Z 2004 Adv. Earth Sci. 19 115 (in Chinese) [刘春蓁2004地球科学进展 19 115]
[6] Li B, Zhang J T 2003 Acta Ecol. Sin. 23 82 (in Chinese) [李斌, 张金屯 2003 生态学报 23 82]
[7] Gao Z, Chae N, Kim J, Hong J, Choi T, Lee H 2004 J. Geophys. Res. 109 D06102
[8] Ma Y M, Kang S, Zhu L, Xu B, Tian L, Yao T 2008 Bull. Amer. Meteor. Soc. 89 1487
[9] Zhang Q, Deng Z Y 2008 Acta Ecol. Sin. 28 1210 (in Chinese) [张强, 邓振镛 2008 生态学报 28 1210]
[10] Sun B Q, Zhang Q, Dong A X, Chen S Y 2005 Adv. Earth Sci. 20 1041 (in Chinese) [孙秉强, 张强, 董安祥, 陈少勇 2005 地球科学进展 20 1041]
[11] Lin S, Wang Y R 2007 J. Desert Res. 27 502 (in Chinese) [林纾, 王毅荣 2007 中国沙漠 27 502]
[12] Zhang Q, Wang S, Zhang J, Wang R Y, Liu H Y, Li Y Y 2009 Adv. Earth Sci. 24 1185 (in Chinese) [张强, 王胜, 张杰, 王润元, 刘宏谊, 李岩瑛 2009 地球科学进展 24 1185]
[13] Zhang Q, Zeng J, Zhang L Y 2012 Sci. China D 55 1872
[14] Kimura R, Fan J, Zhang X C 2006 China Acta Oecologica 29 45
[15] Yang X G, Zhang Q, Wang R Y, Ma P L, Yang Q G, Liu H Y 2004 Plateau Meteor. 28 238 (in Chinese) [杨兴国, 张强, 王润元, 马鹏里, 杨启国, 刘宏宜 2004 高原气象 28 238]
[16] Liu Y Y, Wen J, Wei Z G 2007 Plateau Meteor. 26 928 (in Chinese) [刘远永, 文军, 韦志刚 2007 高原气象 26 928]
[17] Zhang Q, Sun Z X, Wang S 2011 Chinese J. Geophys. 54 1727 (in Chinese) [张强, 孙昭萱, 王胜 2011 地球 54 1727]
[18] Zeng J, Shen J, Zhang Q 2010 Sci. Cold and Arid Regions 2 0288
[19] Huang J P, Zhang W, Zuo J Q, Bi J R 2008 Adv. Atmos. Sci. 25 906
[20] Zuo J Q, Huang J P, Wang J M 2009 Adv. Atmos. Sci. 26 679
[21] Zhang Q, Hu X J, Wang S, Liu H Y 2009 Adv. Earth Sci. 24 363 (in Chinese) [张强, 胡向军, 王胜, 刘宏谊 2009 地球科学进展 24 363]
[22] Zhang Q, Li H Y, Zhao J H 2012 Sci. China D 55 580 doi:10.1007/ s11430-011-4220-3
[23] Zhang Q, Li H Y 2010 Acta Phys. Sin. 59 716 (in Chinese) [张强, 李宏宇 2010 59 716]
[24] Li H Y, Zhang Q, Wang S 2010 Adv. Earth Sci. 25 1070 (in Chinese) [李宏宇, 张强, 王胜 2010 地球科学进展 25 1070]
[25] Zhang Q, Huang R H 2004 J. Appl. Meteor. 43 1917
[26] Chen J Y, Wang J M, Tian G N 1993 Chin. J. Atmos. Sci. 17 21 (in Chinese) [陈家宜, 王介民, 田广宁 1993 大气科学 17 21]
[27] Zhang Q, Wang S, Wen X M, Nan Y H, Zeng J 2012 Acta Meteor. Sin. 70 128 (in Chinese) [张强, 王胜, 问晓梅, 南玉合, 曾剑 2012 气象学报 70 128]
[28] Wang S, Zhang Q 2011 Acta Phys. Sin. 60 059203 (in Chinese) [王胜, 张强 2011 60 059203]
[29] Li H Y, Zhang Q, Zhao J H 2010 Plateau Meteor. 29 1153 (in Chinese) [李宏宇, 张强, 赵建华 2010 高原气象 29 1153]
[30] Li H Y, Zhang Q, Wang C L, Yang F L, Zhao J H 2012 Acta Phys. Sin. 61 159201 (in Chinese) [李宏宇, 张强, 王春玲, 阳伏林, 赵建华 2012 61 159201]
[31] Zeng J, Zhang Q, Wang S 2011 Chinese J. Atmos. Sci. 35 483 (in Chinese) [曾剑, 张强, 王胜 2011 大气科学 35 483]
[32] Sun Z X, Zhang Q 2010 Plateau Meteor. 29 1423 (in Chinese) [孙昭萱, 张强 2010 高原气象 29 1423]
[33] Zhang Q, Wei G A, Cao X Y, Huang R H 2002 Adv. Atmos. Sci. 19 121
[34] Stull R B 1988 An Introduction to Boundary Layer Meteorology (Dordrecht: Kluwer Academic) p666
[35] Oke T R 1978 Boundary Layer Climate (New York: London Methuen and COLTD) p31
[36] Stull R B 2005 Meteorology for Scientists and Engineers (3rd Ed.) (Calif: Brooks/Cole Thomson Learning, Pacific Grove) p580
计量
- 文章访问数: 6959
- PDF下载量: 763
- 被引次数: 0