搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云和降水扰动对黄土高原半干旱草地辐射收支及能量分配的影响

岳平 张强 赵文 王劲松 王润元 姚玉壁 王胜 郝小翠 阳伏林 王若安

引用本文:
Citation:

云和降水扰动对黄土高原半干旱草地辐射收支及能量分配的影响

岳平, 张强, 赵文, 王劲松, 王润元, 姚玉壁, 王胜, 郝小翠, 阳伏林, 王若安

Effects of clouds and precipitation disturbance on the surface radiation budget and energy balance over loess plateau semi-arid grassland in China

Yue Ping, Zhang Qiang, Zhao Wen, Wang Jin-Song, Wang Run-Yuan, Yao Yu-Bi, Wang Sheng, Hao Xiao-Cui, Yang Fu-Lin, Wang Ruo-An
PDF
导出引用
  • 地表辐射收支和能量分配对陆-气系统的反馈是气候模式中最重要的物理过程之一. 认识半干旱地区云和降水的扰动对辐射收支和能量分配的影响规律, 是提高数值模式中评估地表辐射收支和能量平衡参数化效果的关键环节. 利用兰州大学半干旱气候与环境观测站2008年的观测资料, 研究了云和降水的扰动对辐射收支各分量的削弱作用及对地表能量平衡的影响规律. 年平均结果表明, 多云状况可以作为年平均的气候背景; 云和降水对短波辐射削弱最强, 大气向下长波辐射随天空云量的增加而增强, 地表向上长波辐射随着云量的增加而减小, 净辐射占总辐射的比率受云和降水的影响较小. 季节平均结果显示, 短波辐射日积分量在生长季和非生长季均随云量的增加而降低, 生长季云和降水对短波辐射的削弱作用明显强于非生长季. 生长季, 晴天、少云和多云时向上长波辐射差异不大, 阴天时向下和向上长波辐射明显减小. 非生长季, 地表向上长波辐射受云和降水的影响较小, 日积分量变化不大, 向下长波辐射随云量的增多而增强. 地表反照率具有明显的日变化和季节变化, 冬季大, 秋季小; 地表反照率日变化呈不对称的“V”形分布. 生长季, 感热通量和土壤热通量随云量增多而减小; 潜热通量在晴天、少云和多云状况下随云量增多而增大; 阴天时受降水影响, 净辐射的严重削弱导致了潜热通量大大降低. 非生长季, 少云时净辐射日积分量最大, 晴天时的净辐射与多云和阴天状况接近; 感热和潜热通量随云量的增多而减小, 土壤热通量日平均积分值在非生长季为负. 生长季, 多云状况的能量闭合度最好, 能量不平衡差额占净辐射的3.9%; 阴天时最差, 不平衡差额占净辐射的16.8%; 晴天和少云状况不平衡差额约占净辐射量的7%. 非生长季受积雪影响, 能量不闭合差额明显大于生长季.
    The feedback effect of land surface radiation budget and energy distribution on land-atmosphere system is one of the most important physical processes in climate models. Studying the effects of disturbance of cloud and precipitation on radiation budget and energy distribution is a crucial link to increase the parameterization effect of evaluating land surface radiation budget and energy balance in numerical models. Based on the data observed at the Semi-Arid Climate and Environment Observatory of Lanzhou University in 2008, the weakening influences of disturbance of cloud and precipitation on components in radiation budget and on land surface energy balance are studied. The annual average results showed that cloudy situation could be thought of as climatic background of annual average; weakening influences of cloud and precipitation on short-wave radiation are the strongest, and atmospheric long-wave radiation increases while surface long-wave radiation decreases with cloud amount increasing; the influences of cloud and precipitation on the ratio of net radiation to global radiation is small. The seasonal average results show that daily integral value of short-wave radiation decreases with cloud amount increasing both in growing season and in non-growing season, and weakening influences of cloud and precipitation on short-wave radiation in growing season are obviously stronger than in non-growing season. In growing season, there is no substantial difference among surface long-wave radiations on clear days, partly cloudy days and cloudy days, and atmospheric and surface long-wave radiation decrease apparently on overcast days. In non-growing season, the influences of cloud and precipitation on surface long-wave radiation are smaller, and its daily integral value changes a little, and atmospheric long-wave radiation increases with cloud amount increasing. The surface albedo has obvious diurnal and seasonal variation characteristics and it is higher in winter than in autumn; the diurnal variation curves of albedo present unsymmetrical “V” shapes. In growing season, sensible heat flux and soil heat flux decreased along with cloud amount increasing; latent heat flux increases with cloud amount increasing on clear, partly cloudy and cloudy days; due to the precipitation on obscure days, latent heat flux decreases greatly because net radiation is seriously weakened. In non-growing season, daily integral value of net radiation is greatest on partly cloudy days, and net radiation on clear days is very close to it on cloudy and overcast days; sensible and latent heat flux decreases with cloud amount increasing, average daily integral value of soil heat flux is negative in non-growing season. In growing season, energy closure degree on cloudy days is best, and imbalance energy accounts for 3.9% of net energy; energy closure degree on overcast days is worst, and imbalance energy accounts for 16.8% of net energy; imbalance energy accounts for 7% of net energy under both clear and partly cloud situations. Due to snow effect in non-growing season, energy closure degree in non-growing season is greater obviously than it in growing season.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB430206, 2012CB955304)、国家自然科学基金(批准号: 41075008, 40830957)、中国博士后特别资助基金(批准号: 2013T60901)、中国博士后基金(批准号: 20110490854) 和中国气象局干旱气象科研基金(批准号: KYS2011BSKY01)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB430206, 2012CB955304), the National Natural Science Foundation of China (Grant Nos. 41075008, 40830957), the Sepcial Postdoctoral Science Foundation of China (Grant No. 2013T60901), the Postdoctoral Science Foundation of China (Grant No. 20110490854), and the Postdoctoral Science Foundation of the Institute of Arid Meteorology of China Meteorological Administration (Grant No. KYS2011BSKY01).
    [1]

    Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 60 019201]

    [2]

    Ma J Y, Liang H, Luo Y, Li S K 2011 Acta Phys. Sin. 60 069601 (in Chinese) [马金玉, 梁宏, 罗勇, 李世奎 2011 60 069601]

    [3]

    Wang S, Zhang Q 2011 Acta Phys. Sin. 60 059203 (in Chinese) [王胜, 张强 2011 60 059203]

    [4]

    Mahrt L 1998 J. Atmos. Ocean Technol. 15 416

    [5]

    Verma S B, Baldocchi D D, Anderson D E, Matt D R, Clement R J 1986 Bound-Layer Meteor. 36 71

    [6]

    Yue P, Zhang Q, Niu S J, Wang R Y, Sun X Y, Wang S 2012 Acta Phys. Sin. 61 219201 (in Chinese) [岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜 2012 61 219201]

    [7]

    Yue P, Zhang Q, Li Y H, Wang R Y, Wang S, Sun X Y 2013 Acta Phys. Sin. 62 099202 (in Chinese) [岳平, 张强, 李耀辉, 王润元, 王胜, 孙旭映 2013 62 099202]

    [8]

    Li Z Q, Yu G R, Wen X F, Zhang L M, Ren C Y, Fu Y L 2004 Sci. China D: Earth Sci. 34 46  (in Chinese) [李正泉, 于贵瑞, 温学发, 张雷明, 任传友, 伏玉玲 2004 中国科学 D 辑 地球科学 34 46]

    [9]

    Zhang Q, Sun Z X, Wang S 2011 Chin. J. Geophys. 54 1722 (in Chinese) [张强, 孙昭萱, 王胜 2011 地球 54 1722]

    [10]

    Ma Y M, Yao T D, Wang J M, Hu Z Y, Ishikwawa H, Ma W Q, Su Z B 2006 Adv. Earth. Sci. 21 1215 (in Chinese) [马耀明, 姚檀栋, 王介民, 胡泽勇, Ishikwawa H, 马伟强, 苏中波 2006 地球科学展 21 1215]

    [11]

    Zhang Q, Wang S 2008 Adv. Earth. Sci. 23 167 (in Chinese) [张强, 王胜 2008 地球科学进展 23 167]

    [12]

    Billesbach D P 2011 Agric. For. Meteor. 151 394

    [13]

    Mander M, Oncely S P, Vogt R, Weidinger T, Riberio L, Bernhofer C, Focken T, Kohsiek W, De Burin H A R, Liu H 2007 Boundary-Layer. Meteorol. 123 29

    [14]

    Yue P, Li Y H, Zhang L 2012 J. Meteorol. Soc. Jap. 90C 173

    [15]

    Teixira J, Stevens B, Bretheron C S, Cederwall R, Doyle J D, Golaz J C, Holtslag A A M, Klein S A, Lundquist K, Randall D A, Suebesma A P, Soares P M M 2008 Bull. Amer. Meteorl. Soc. 89 453

    [16]

    van Donkelaar A, Martin R V, Park R J 2005 J. Geophys. Res. 110 D0220

    [17]

    Zeng Q C, Zhang B L 1998 Chin. J. Atmo. Sci. 22 805 (in Chinese) [曾庆存, 张邦林 1998 大气科学 22 805]

    [18]

    Zeng Q C, Li J P 2002 Chin. J. Atmo. Sci. 26 433 (in Chinese) [曾庆存, 李建平 2002 大气科学 26 433]

    [19]

    Zhang Q, Zeng J, Zhang L Y, Yao T 2012 Chin. Sci. D: Earth. Sci. (in Chinese) 42 1385 [张强, 曾剑, 张立阳, 姚彤 2012 中国科学D辑 地球科学 42 1385]

    [20]

    Huang R H, Zhou T, Chen W 2003 Adv. Atmos. Sci. 20 55

    [21]

    Venugopal T, Seetaranayya P, Dhakate A R 2005 J. Earth Syst. Sci. 114 421

    [22]

    Wilson K B, Hanson P J, Baldocchi D D 2000 Agric. For. Meteor. 10283

    [23]

    Wen J, Wei Z G, L S H, Chen S Q, Ao H Y, Liang L 2007 Adv. Atmos. Sci. 24 301

    [24]

    Hung J P, Zhang W, Zuo J Q, Bi J R, Shi J S, Wang X, Chang Z L, Huang Z W, Yang S, Zhang B D, Wang G Y, Feng G H, Yuan J Y, Zhang L, Zuo H C, Wang S G, Fu C B, Chou J F 2008 Adv. Atmos. Sci. 25 906

    [25]

    Zhang Q, Cao X Y 2003 Chin J. Atmos. Sci. 27 247 (in Chinese) [张强, 曹晓彦 2003 大气科学 27 247]

    [26]

    Li Z C, Wei Z G, Wen J, Fu R, Liu Y Y, Liu R 2009 Acta Energy Solar Sin. 30 12 (in Chinese) [李振朝, 伟志刚, 文军, 符睿, 刘远永, 刘蓉 2009 太阳能学报 30 12]

    [27]

    Zhang Q, Zhao M 1998 Plateau Meteorology 17 335 (in Chinese) [张强, 赵鸣 1998 高原气象 17 335]

    [28]

    Liu H Z, Tu G, Dong W J 2008 Chin. Sci. Bull. 53 1220 (in Chinese) [刘辉志, 涂钢, 董文杰 2008 科学通报 53 1220]

    [29]

    Focken T 2008 Ecol. Appl. 18 1351

    [30]

    Zhang Q, Li H Y 2010 Acta Phys. Sin. 59 716 (in Chinese) [张强, 李宏宇 2010 59 716]

    [31]

    Li H Y, Zhang Q, Wang C L, Yang F L, Zhao J H 2012 Acta Phys. Sin. 61 159201 (in Chinese) [李宏宇, 张强, 王春玲, 阳伏林, 赵建华 2012 61 159201]

    [32]

    Letzel M O, Raasch S 2003 J. Atmos. Sci. 60 2328

    [33]

    Liang J N, Zhang L, Zhang W, Shi J S 2013 Acta Phys. Sin. 62 099203 (in Chinese) [梁捷宁, 张镭, 张武, 史晋森 2013 62 099203]

    [34]

    Yue P, Zhang Q, Niu S J, Cheng H, Wang X Y 2011 Acta Meteor. Sin. 25 774

    [35]

    Oncley S P, Foken T, Vogt R, Kohsiek W, de Bruin H A R, Bernhofer C, Christen A, Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H P, Mauder M, Pitacco A, Ribeiro L, Weidinger T 2007 Bound-Layer Meteor. 123 1

    [36]

    Sakai R K, Fitajarrald D R, Moore K E 2001 J. Appl. Meteor. 40 2178

  • [1]

    Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 60 019201]

    [2]

    Ma J Y, Liang H, Luo Y, Li S K 2011 Acta Phys. Sin. 60 069601 (in Chinese) [马金玉, 梁宏, 罗勇, 李世奎 2011 60 069601]

    [3]

    Wang S, Zhang Q 2011 Acta Phys. Sin. 60 059203 (in Chinese) [王胜, 张强 2011 60 059203]

    [4]

    Mahrt L 1998 J. Atmos. Ocean Technol. 15 416

    [5]

    Verma S B, Baldocchi D D, Anderson D E, Matt D R, Clement R J 1986 Bound-Layer Meteor. 36 71

    [6]

    Yue P, Zhang Q, Niu S J, Wang R Y, Sun X Y, Wang S 2012 Acta Phys. Sin. 61 219201 (in Chinese) [岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜 2012 61 219201]

    [7]

    Yue P, Zhang Q, Li Y H, Wang R Y, Wang S, Sun X Y 2013 Acta Phys. Sin. 62 099202 (in Chinese) [岳平, 张强, 李耀辉, 王润元, 王胜, 孙旭映 2013 62 099202]

    [8]

    Li Z Q, Yu G R, Wen X F, Zhang L M, Ren C Y, Fu Y L 2004 Sci. China D: Earth Sci. 34 46  (in Chinese) [李正泉, 于贵瑞, 温学发, 张雷明, 任传友, 伏玉玲 2004 中国科学 D 辑 地球科学 34 46]

    [9]

    Zhang Q, Sun Z X, Wang S 2011 Chin. J. Geophys. 54 1722 (in Chinese) [张强, 孙昭萱, 王胜 2011 地球 54 1722]

    [10]

    Ma Y M, Yao T D, Wang J M, Hu Z Y, Ishikwawa H, Ma W Q, Su Z B 2006 Adv. Earth. Sci. 21 1215 (in Chinese) [马耀明, 姚檀栋, 王介民, 胡泽勇, Ishikwawa H, 马伟强, 苏中波 2006 地球科学展 21 1215]

    [11]

    Zhang Q, Wang S 2008 Adv. Earth. Sci. 23 167 (in Chinese) [张强, 王胜 2008 地球科学进展 23 167]

    [12]

    Billesbach D P 2011 Agric. For. Meteor. 151 394

    [13]

    Mander M, Oncely S P, Vogt R, Weidinger T, Riberio L, Bernhofer C, Focken T, Kohsiek W, De Burin H A R, Liu H 2007 Boundary-Layer. Meteorol. 123 29

    [14]

    Yue P, Li Y H, Zhang L 2012 J. Meteorol. Soc. Jap. 90C 173

    [15]

    Teixira J, Stevens B, Bretheron C S, Cederwall R, Doyle J D, Golaz J C, Holtslag A A M, Klein S A, Lundquist K, Randall D A, Suebesma A P, Soares P M M 2008 Bull. Amer. Meteorl. Soc. 89 453

    [16]

    van Donkelaar A, Martin R V, Park R J 2005 J. Geophys. Res. 110 D0220

    [17]

    Zeng Q C, Zhang B L 1998 Chin. J. Atmo. Sci. 22 805 (in Chinese) [曾庆存, 张邦林 1998 大气科学 22 805]

    [18]

    Zeng Q C, Li J P 2002 Chin. J. Atmo. Sci. 26 433 (in Chinese) [曾庆存, 李建平 2002 大气科学 26 433]

    [19]

    Zhang Q, Zeng J, Zhang L Y, Yao T 2012 Chin. Sci. D: Earth. Sci. (in Chinese) 42 1385 [张强, 曾剑, 张立阳, 姚彤 2012 中国科学D辑 地球科学 42 1385]

    [20]

    Huang R H, Zhou T, Chen W 2003 Adv. Atmos. Sci. 20 55

    [21]

    Venugopal T, Seetaranayya P, Dhakate A R 2005 J. Earth Syst. Sci. 114 421

    [22]

    Wilson K B, Hanson P J, Baldocchi D D 2000 Agric. For. Meteor. 10283

    [23]

    Wen J, Wei Z G, L S H, Chen S Q, Ao H Y, Liang L 2007 Adv. Atmos. Sci. 24 301

    [24]

    Hung J P, Zhang W, Zuo J Q, Bi J R, Shi J S, Wang X, Chang Z L, Huang Z W, Yang S, Zhang B D, Wang G Y, Feng G H, Yuan J Y, Zhang L, Zuo H C, Wang S G, Fu C B, Chou J F 2008 Adv. Atmos. Sci. 25 906

    [25]

    Zhang Q, Cao X Y 2003 Chin J. Atmos. Sci. 27 247 (in Chinese) [张强, 曹晓彦 2003 大气科学 27 247]

    [26]

    Li Z C, Wei Z G, Wen J, Fu R, Liu Y Y, Liu R 2009 Acta Energy Solar Sin. 30 12 (in Chinese) [李振朝, 伟志刚, 文军, 符睿, 刘远永, 刘蓉 2009 太阳能学报 30 12]

    [27]

    Zhang Q, Zhao M 1998 Plateau Meteorology 17 335 (in Chinese) [张强, 赵鸣 1998 高原气象 17 335]

    [28]

    Liu H Z, Tu G, Dong W J 2008 Chin. Sci. Bull. 53 1220 (in Chinese) [刘辉志, 涂钢, 董文杰 2008 科学通报 53 1220]

    [29]

    Focken T 2008 Ecol. Appl. 18 1351

    [30]

    Zhang Q, Li H Y 2010 Acta Phys. Sin. 59 716 (in Chinese) [张强, 李宏宇 2010 59 716]

    [31]

    Li H Y, Zhang Q, Wang C L, Yang F L, Zhao J H 2012 Acta Phys. Sin. 61 159201 (in Chinese) [李宏宇, 张强, 王春玲, 阳伏林, 赵建华 2012 61 159201]

    [32]

    Letzel M O, Raasch S 2003 J. Atmos. Sci. 60 2328

    [33]

    Liang J N, Zhang L, Zhang W, Shi J S 2013 Acta Phys. Sin. 62 099203 (in Chinese) [梁捷宁, 张镭, 张武, 史晋森 2013 62 099203]

    [34]

    Yue P, Zhang Q, Niu S J, Cheng H, Wang X Y 2011 Acta Meteor. Sin. 25 774

    [35]

    Oncley S P, Foken T, Vogt R, Kohsiek W, de Bruin H A R, Bernhofer C, Christen A, Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H P, Mauder M, Pitacco A, Ribeiro L, Weidinger T 2007 Bound-Layer Meteor. 123 1

    [36]

    Sakai R K, Fitajarrald D R, Moore K E 2001 J. Appl. Meteor. 40 2178

  • [1] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型.  , 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [2] 李启华, 陆汉城, 钟玮, 王卫超, 郭兴亮, 袁猛. 双台风条件下水汽的中尺度输送特征与收支诊断.  , 2018, 67(3): 039201. doi: 10.7498/aps.67.20170455
    [3] 李宏宇, 符淙斌, 郭维栋, 马芳. 干旱区不同下垫面能量分配机理及对微气候反馈的研究.  , 2015, 64(5): 059201. doi: 10.7498/aps.64.059201
    [4] 夏露, 张强. 黄土高原地表能量平衡分量年际变化及其对气候波动的响应.  , 2014, 63(11): 119201. doi: 10.7498/aps.63.119201
    [5] 颜骏. Klein-Gordon方程Q球解中能量稳定性和扰动研究.  , 2013, 62(23): 230301. doi: 10.7498/aps.62.230301
    [6] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究.  , 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [7] 岳平, 张强, 李耀辉, 王润元, 王胜, 孙旭映. 半干旱草原下垫面动量和感热总体输送系数参数化关系研究.  , 2013, 62(9): 099202. doi: 10.7498/aps.62.099202
    [8] 梁捷宁, 张镭, 张武, 史晋森. 黄土高原半干旱区地表能量不闭合及其对二氧化碳通量的影响.  , 2013, 62(9): 099203. doi: 10.7498/aps.62.099203
    [9] 王胜, 张强. 黄土高原半干旱区露水形成的大气物理特征研究.  , 2011, 60(5): 059203. doi: 10.7498/aps.60.059203
    [10] 龚添喜, 王永久. 包围有暗能量黑洞的Hawking辐射修正.  , 2010, 59(10): 6842-6846. doi: 10.7498/aps.59.6842
    [11] 张亮, 张立凤, 吴海燕, 李刚. 正压Rossby波扰动能量.  , 2010, 59(1): 44-53. doi: 10.7498/aps.59.44
    [12] 章大全, 张璐, 杨杰, 封国林. 近50年中国降水及温度变化在干旱形成中的影响.  , 2010, 59(1): 655-663. doi: 10.7498/aps.59.655
    [13] 葛愉成. 高次谐波辐射光子的能量-激光相位关系研究.  , 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [14] 王可嘉, 刘劲松, 吕健滔. 双光子抽运随机激光器中辐射光能量的演化.  , 2007, 56(7): 3906-3910. doi: 10.7498/aps.56.3906
    [15] 李芳昱, 石东平, 代洪霞. 静磁场中双极化态弱平面引力波对高斯束的扰动能量.  , 2003, 52(11): 2706-2711. doi: 10.7498/aps.52.2706
    [16] 徐克西. 非平衡辐射响应与准二维高温超导体系的磁通涡旋激发.  , 2000, 49(5): 989-996. doi: 10.7498/aps.49.989
    [17] 戚霞枝, 郑少白. CT-6B托卡马克装置中软X射线辐射及扰动.  , 1984, 33(4): 465-471. doi: 10.7498/aps.33.465
    [18] 王友棠. 引力场的能量动量赝张量与轴对称体系的引力辐射.  , 1982, 31(9): 1215-1222. doi: 10.7498/aps.31.1215
    [19] 周敏耀, 陈良范. 黑洞能量涨落和黑洞视界邻近的辐射气温度上限.  , 1982, 31(10): 1436-1439. doi: 10.7498/aps.31.1436
    [20] 吴中祥. 激光器谐振腔中辐射能量密度须按场强叠加计算.  , 1980, 29(3): 392-394. doi: 10.7498/aps.29.392
计量
  • 文章访问数:  6159
  • PDF下载量:  589
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-19
  • 修回日期:  2013-07-24
  • 刊出日期:  2013-10-05

/

返回文章
返回
Baidu
map