搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用热平衡态超导电荷量子比特实现量子隐形传态

乔盼盼 艾合买提·阿不力孜 蔡江涛 路俊哲 麦麦提依明·吐孙 日比古·买买提明

引用本文:
Citation:

利用热平衡态超导电荷量子比特实现量子隐形传态

乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明

Quantum teleportation using superconducting charge qubits in thermal equilibrium

Qiao Pan-Pan, Ahmad Abliz, Cai Jiang-Tao, Lu Jun-Zhe, Maimaitiyiming Tusun, Ribigu Maimaitiming
PDF
导出引用
  • 本文利用处于热平衡态的两个相同超导电荷量子比特纠缠态作为量子隐形传态的信道, 给出标准量子隐形传态协议下传递单量子比特态和两量子比特态的纠缠以及非标准协议下传递单量子比特态时平均保真度的解析表达式, 研究其随温度、约瑟夫森能等系统参数的变化情况. 计算结果表明, 在标准量子隐形传态协议下传递两量子比特之间的纠缠以及非标准量子隐形传态协议下传递单量子比特态时可以实现接近理想的量子隐形传态.
    Is this paper we mainly investigate the effects of the temperature and Josephson energy on teleportation of one qubit state in both the standard and the non-standard protocols as well as the partial teleportation of an entangled state under the standard protocol via two identical superconducting charge qubits in thermal equilibrium as the teleportation channel, and give the analytical expression of the average fidelity. Our results show that the teleportation of one qubit state in non-standard protocol and the partial teleportation of entanglement in standard protocol can be almost perfect, indicating that quantum teleportation, with using superconducting charge qubits in thermal equilibrium as a quantum channel, is feasible in theory.
    • 基金项目: 教育部科学技术研究重点项目(批准号: 212193)、 新疆师范大学研究生科技创新基金(批准号: 20121213)、新疆维吾尔自治区理论物理重点学科研究生科技创新项目(批准号: LLWLY201103)和新疆维吾尔自治区自然科学基金(批准号: 2012211A052)资助的课题.
    • Funds: Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No. 212193), the Science and Technology Innovation Foundation for Graduate Students of XJNU (Grant No. 20121213), the Innovative Foundation for Graduate Students granted by the Key Subjects of Theoretical Physics of Xinjiang, China (Grant No. LLWLL201103), and the Natural Science Fund of XUAR (Grant No. 2012211A052).
    [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Pan J W, Daniell M, Gasparoni S, Weihs G, Zeilinger A 2001 Phys. Rev. Lett. 86 4435

    [4]

    Ursin R, Jennewein T, Aspelmeyer M, Kaltenbaek R, Lindenthal M, Walther P, Zeilinger A 2004 Nature 430 849

    [5]

    Riebe M, Häffner H, Roos C F, Hänsel W, Benhelm J, Lancaster G P T, Körber T W, Becher C, Schmidt K F, James D F V, Blat R 2004 Nature 429 734

    [6]

    Barrett M D, Chiaverini J, Schaetz T, Britton J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D, Ozeri R, Wineland D J 2004 Nature 429 737

    [7]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [8]

    Yu Y 2005 Acta Phys. Sin. 34 578 (in Chinese) [于扬 2005 34 578]

    [9]

    You J Q, Nori F 2005 Phys. Today 58 42

    [10]

    Clacke J, Wilhelm F K 2008 Nature 453 1031

    [11]

    You J Q 2010 Acta Phys. Sin. 39 810 (in Chinese) [游建强 2010 39 810]

    [12]

    Liao Q H, Fang G Y, Wang J C, Ahmad M A, Liu S T 2011 Chin. Phys. Lett. 28 060307

    [13]

    Ge G Q, Qin C, Yin M, Huang Y H 2011 Chin. Phys. B 20 080304

    [14]

    Zhang F Y, Shi Y 2011 Commum. Theor. Phys. 56 385

    [15]

    Tian L J, Qin L G, Zhang H B 2011 Chin. Phys. Lett. 28 050308

    [16]

    Paternostro M, Falci G, Kim M, Palma G M 2004 Phys. Rev. B 69 214502

    [17]

    Li J G, Zou J, Xu B M, Shao B 2011 Chin. Phys. Lett. 28 090301

    [18]

    Strauch F W, Williams C J 2008 Phys. Rev. B 78 094516

    [19]

    Metwally N, El-Amin A A 2009 Phys. E 44 718

    [20]

    Baur M, Fedorov A, Steffen L, Filipp S, Silva M P, Wallraff A 2012 Phys. Rev. Lett. 108 040502

    [21]

    Strauch F W, Williams C J 2008 Phys. Rev. B 78 094516

    [22]

    Pashkin Y A, Yamamoto T, Astafiev O, Nakamara Y, Averin D V, Tsai J S 2003 Nature 421 823

    [23]

    Storcz M J, Wilhelm F K 2003 Phys. Rev. A 67 042319

    [24]

    Bowen G, Bose S 2001 Phys. Rev. Lett. 87 267901

    [25]

    Pan C J, Fang J S, Peng X F, Liao X P, fang M F 2011 Acta Phys. Sin. 60 090303 (in Chinese) [潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发 2011 60 090303]

    [26]

    Zhang G F 2007 Phys. Rev. A 75 034304

    [27]

    Pashkin Y A, Astafiev O, Yamamoto T, Nakamura Y, Tsai J S 2009 Quantum. Inf. Process 8 55

    [28]

    Cai J T, Abliz A, Zhang G F, Bai Y K 2010 Opts. Commun. 283 4414

  • [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Pan J W, Daniell M, Gasparoni S, Weihs G, Zeilinger A 2001 Phys. Rev. Lett. 86 4435

    [4]

    Ursin R, Jennewein T, Aspelmeyer M, Kaltenbaek R, Lindenthal M, Walther P, Zeilinger A 2004 Nature 430 849

    [5]

    Riebe M, Häffner H, Roos C F, Hänsel W, Benhelm J, Lancaster G P T, Körber T W, Becher C, Schmidt K F, James D F V, Blat R 2004 Nature 429 734

    [6]

    Barrett M D, Chiaverini J, Schaetz T, Britton J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D, Ozeri R, Wineland D J 2004 Nature 429 737

    [7]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [8]

    Yu Y 2005 Acta Phys. Sin. 34 578 (in Chinese) [于扬 2005 34 578]

    [9]

    You J Q, Nori F 2005 Phys. Today 58 42

    [10]

    Clacke J, Wilhelm F K 2008 Nature 453 1031

    [11]

    You J Q 2010 Acta Phys. Sin. 39 810 (in Chinese) [游建强 2010 39 810]

    [12]

    Liao Q H, Fang G Y, Wang J C, Ahmad M A, Liu S T 2011 Chin. Phys. Lett. 28 060307

    [13]

    Ge G Q, Qin C, Yin M, Huang Y H 2011 Chin. Phys. B 20 080304

    [14]

    Zhang F Y, Shi Y 2011 Commum. Theor. Phys. 56 385

    [15]

    Tian L J, Qin L G, Zhang H B 2011 Chin. Phys. Lett. 28 050308

    [16]

    Paternostro M, Falci G, Kim M, Palma G M 2004 Phys. Rev. B 69 214502

    [17]

    Li J G, Zou J, Xu B M, Shao B 2011 Chin. Phys. Lett. 28 090301

    [18]

    Strauch F W, Williams C J 2008 Phys. Rev. B 78 094516

    [19]

    Metwally N, El-Amin A A 2009 Phys. E 44 718

    [20]

    Baur M, Fedorov A, Steffen L, Filipp S, Silva M P, Wallraff A 2012 Phys. Rev. Lett. 108 040502

    [21]

    Strauch F W, Williams C J 2008 Phys. Rev. B 78 094516

    [22]

    Pashkin Y A, Yamamoto T, Astafiev O, Nakamara Y, Averin D V, Tsai J S 2003 Nature 421 823

    [23]

    Storcz M J, Wilhelm F K 2003 Phys. Rev. A 67 042319

    [24]

    Bowen G, Bose S 2001 Phys. Rev. Lett. 87 267901

    [25]

    Pan C J, Fang J S, Peng X F, Liao X P, fang M F 2011 Acta Phys. Sin. 60 090303 (in Chinese) [潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发 2011 60 090303]

    [26]

    Zhang G F 2007 Phys. Rev. A 75 034304

    [27]

    Pashkin Y A, Astafiev O, Yamamoto T, Nakamura Y, Tsai J S 2009 Quantum. Inf. Process 8 55

    [28]

    Cai J T, Abliz A, Zhang G F, Bai Y K 2010 Opts. Commun. 283 4414

  • [1] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输.  , 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [2] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态.  , 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [3] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [4] 王林飞, 聂敏, 杨光, 张美玲, 裴昌幸. 一种基于分层的量子分组传输方案及性能分析.  , 2016, 65(13): 130302. doi: 10.7498/aps.65.130302
    [5] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用.  , 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [6] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理.  , 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [7] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析.  , 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [8] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [9] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [10] 丁东, 闫凤利. 基于弱非线性实现量子信息签名.  , 2013, 62(1): 010302. doi: 10.7498/aps.62.010302
    [11] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [12] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度.  , 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [13] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送.  , 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [14] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度.  , 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [15] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [16] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度.  , 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [17] 王忠纯. 外场驱动对Tavis-Cummings模型中量子态保真度的影响.  , 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
    [18] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [19] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态.  , 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [20] 宋同强. 利用双模压缩真空态实现量子态的远程传输.  , 2004, 53(10): 3358-3362. doi: 10.7498/aps.53.3358
计量
  • 文章访问数:  7301
  • PDF下载量:  601
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-08
  • 修回日期:  2012-07-16
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map