-
本文采用分子动力学模拟方法研究了在拉伸载荷下, 堆垛层错和温度对纳米多晶镁力学性能的影响. 在模拟中, 采用嵌入原子势描述镁原子之间的相互作用. 计算结果表明: 在纳米晶粒中引入堆垛层错能明显增强纳米多晶镁的屈服应力, 但堆垛层错对纳米多晶镁杨氏模量的影响很小; 温度为300.0 K时, 孪晶在晶粒交界附近形成, 孪晶随着拉伸应变的增加而逐渐生长. 当拉伸应变达到0.087时, 一种基面与X-Y面成大约35 角且内部包含堆垛层错的新晶粒成核并快速增长. 也就是说, 孪晶和新晶粒的形成和繁殖是含堆垛层错的纳米多晶镁在300.0 K温度下的主要变形机理. 模拟结果也显示, 当温度为10.0 K时, 位错的成核和滑移是含堆垛层错的纳米多晶镁拉伸变形的主要形式.The effects of stacking fault (SF) and temperature on the mechanical properties of nano-polycrystal Mg under tension loading are investigated by molecular dynamics simulations. The interatomic potential of embedded atom method (EAM) is used as the Mg-Mg interaction. The computational results show that the yield strength of nano-polycrystal Mg can be obviously enhanced when stacking fault is introduced into grains, and the effect of SF on the Young's modulus of nano-polycrystal Mg is very small. The results also show that tensile twins and new grain at 300.0 K are nucleated and initiated at grain boundaries, growing continuously with the increase of strain. The dihedral angel between the (1000) plane of new grain and the X-Y plane is about 35. In other words, the nucleation and the growth of twins and new grains are the predominant deformation mechanism for nano-polycrystal Mg at 300.0K. We also find that at 10.0K the dislocation nucleation and slip are the predominant modes of the plastic deformation for nano-polycrystal Mg.
-
Keywords:
- stacking fault /
- molecular dynamics simulation /
- mechanical property
[1] Lu L, Chen X, Huang X, Lu K 2009 Science 323 607
[2] Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511
[3] Liang H Y, Wang X X, Wu H A, Wang Y 2002 Acta Phys. Sin. 51 2308 (in Chinese) [梁海弋, 王秀喜, 吴恒安, 王宇 2002 51 2308]
[4] Zhang Y G, Lu J, Zhang H W, Chen Z 2009 Scripta Mater. 60 508
[5] Liu X M, You X C, Liu Z L, Nie J F, Zhuang Z 2009 Acta Phys. Sin. 58 1849 (in Chinese) [刘小明, 由小川, 柳占立, 聂君峰, 庄茁 2009 58 1849]
[6] Qu S X, Zhou H F 2010 Nanotechnology 21 335704
[7] Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 60 016107]
[8] Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 59 4781]
[9] Qu S X, Zhou H F 2011 Scripta Mater. 65 265
[10] Yang Z Y, Lu Z X, Zhao Y P 2009 Comput. Mater. Sci. 46 142
[11] Han J, Su X M, Jin Z H 2011 Scripta Mater. 64 693
[12] Tang T, Kim S, Horstemeyer M F 2010 Acta. Mater. 58 4742
[13] Kim D H, Ebrahimi F, Manuel M V 2011 Mater. Sci. Eng. A 528 5411
[14] Li B, Ma E 2009 Acta. Mater. 57 1734
[15] Guo Y F, Wang Y S, Qi H G 2010Acta Metall. Sin. 23 370
[16] Song H Y, Li Y L 2012 Phys. Lett. A 376 529
[17] Song H Y, Li Y L 2012 J. Appl. Phys. 111 044322
[18] Zhu Y T, Liao X Z, Wu X L 2012 Prog. Mater. Sci. 57 1
[19] Liu X Y, Adams J B, Ercolessi F, Moriarty J A 1996 Modelling Simul. Mater. Sci. Eng. 4 293
[20] Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069
[21] Faken D, Jonsson H 1994 Compos. Mater. Sci. 2 279
[22] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[23] Froseth A G, VanSwygenhoven H, Derlet P M 2005 Acta. Mater. 53 4847
-
[1] Lu L, Chen X, Huang X, Lu K 2009 Science 323 607
[2] Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511
[3] Liang H Y, Wang X X, Wu H A, Wang Y 2002 Acta Phys. Sin. 51 2308 (in Chinese) [梁海弋, 王秀喜, 吴恒安, 王宇 2002 51 2308]
[4] Zhang Y G, Lu J, Zhang H W, Chen Z 2009 Scripta Mater. 60 508
[5] Liu X M, You X C, Liu Z L, Nie J F, Zhuang Z 2009 Acta Phys. Sin. 58 1849 (in Chinese) [刘小明, 由小川, 柳占立, 聂君峰, 庄茁 2009 58 1849]
[6] Qu S X, Zhou H F 2010 Nanotechnology 21 335704
[7] Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 60 016107]
[8] Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 59 4781]
[9] Qu S X, Zhou H F 2011 Scripta Mater. 65 265
[10] Yang Z Y, Lu Z X, Zhao Y P 2009 Comput. Mater. Sci. 46 142
[11] Han J, Su X M, Jin Z H 2011 Scripta Mater. 64 693
[12] Tang T, Kim S, Horstemeyer M F 2010 Acta. Mater. 58 4742
[13] Kim D H, Ebrahimi F, Manuel M V 2011 Mater. Sci. Eng. A 528 5411
[14] Li B, Ma E 2009 Acta. Mater. 57 1734
[15] Guo Y F, Wang Y S, Qi H G 2010Acta Metall. Sin. 23 370
[16] Song H Y, Li Y L 2012 Phys. Lett. A 376 529
[17] Song H Y, Li Y L 2012 J. Appl. Phys. 111 044322
[18] Zhu Y T, Liao X Z, Wu X L 2012 Prog. Mater. Sci. 57 1
[19] Liu X Y, Adams J B, Ercolessi F, Moriarty J A 1996 Modelling Simul. Mater. Sci. Eng. 4 293
[20] Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069
[21] Faken D, Jonsson H 1994 Compos. Mater. Sci. 2 279
[22] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[23] Froseth A G, VanSwygenhoven H, Derlet P M 2005 Acta. Mater. 53 4847
计量
- 文章访问数: 7490
- PDF下载量: 1760
- 被引次数: 0