-
利用马赫-曾德尔干涉仪获得了延迟双脉冲激光和三种单脉冲激光产生大气等离子体的时间序列干涉图, 得到了等离子体中心区域在不同时刻的电子密度. 把延迟双脉冲激光与三种单脉冲激光产生的等离子体电子密度进行比较的结果显示: 第二束光作用后的相同时刻, 延迟双脉冲激光产生的等离子体电子密度大于三种单脉冲激光产生的等离子体电子密度. 对注入相同能量的延迟双脉冲激光与单脉冲激光产生等离子体的电子密度时间变化进行理论分析的结果表明: 延迟双脉冲激光的第二束光与等离子体相互作用, 使得作用结束时等离子体的电子密度增加得很多, 进而造成了第二束光作用后延迟双脉冲激光产生的等离子体电子密度大于单脉冲激光产生的等离子体电子密度. 进一步的分析表明, 注入能量相同时延迟双脉冲激光有效延长了等离子体的存在时间.By using Mach-Zehnder interferometer, we gain time series interference patterns of delayed double pulse laser and three-monopulse laser produced air plasmas. And then we gain electron density values in the centre of plasma region at different moments. We compare electron density values of the plasmas produced, respectively, by delayed double pulse laser and three-monopulse laser. The results show that the electron density of the plasma produced by the delayed double pulse laser is greater than by the three-monopulse laser at the same time after the second laser effects. The electron density time change processes of the plasma produced by delayed double pulse laser and monopulse laser of the same injection energy are analyzed theoretically. The analysis results show that when the same laser energy is injected, the delayed double pulse method can increase the plasma existing time effectively.
-
Keywords:
- air plasma /
- double pulse lasers /
- electron density
[1] Chan C H, Moody C D, McKnight W B 1973 J. Appl. Phys. 44 1179
[2] Williams W E, Soileau M J, Stryland E W V 1983 Appl. Phys. Lett. 43 352
[3] Tambay R, Thareja R K 1991 J. Appl. Phys. 70 2890
[4] Hohreiter V, Carranza J E, Hahn D W 2004 Spectrochimica Acta Part B 59 327
[5] Zhang H, Lu J, Ni X 2009 J. Appl. Phys. 106 063308
[6] Zhang H C, Lu J, Ni X W 2009 Acta Phys. Sin. 58 4034 (in Chinese) [张宏超, 陆建, 倪晓武 2009 58 4034]
[7] Schwarz J, Rambo P, Diels J C 2001 Appl. Phys. B 72 343
[8] Thiyagarajan M, Scharer J 2008 J. Appl. Phys. 104 013303
[9] Lu J, Ni X W, He A Z 1996 Physic of laser and material interaction (Beijing: JiXie GongYe Press) p87 (in Chinese) [陆建 倪晓武 贺安之 1996 激光与材料相互作用物理学 (北京: 机械工业出版社) 第87页].
[10] Thiyagarajan M, Scharer J E 2008 IEEE Transactions on Plasma Science 36 2512
[11] Soubacq S, Pignolet P, Schall E, Batina J 2004 J. Phys. D: Appl. Phys. 37 2686
[12] Tang X S, Li C Y, Zhu G L, Ji X H, Feng E Y, Zhang W J, Cui Z F 2004 Chinese Journal of Lasers 31 687 (in Chinese) [唐晓闩, 李春燕, 朱光来, 季学韩, 凤尔银, 张为俊, 崔执凤 2004 中国激光 31 687]
[13] Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125
[14] Tong H F, Tang Z P 2008 Chinese Journal of High Pressure Physics 22 143 (in Chinese) [童慧峰, 唐志平 2008 高压 22 143]
-
[1] Chan C H, Moody C D, McKnight W B 1973 J. Appl. Phys. 44 1179
[2] Williams W E, Soileau M J, Stryland E W V 1983 Appl. Phys. Lett. 43 352
[3] Tambay R, Thareja R K 1991 J. Appl. Phys. 70 2890
[4] Hohreiter V, Carranza J E, Hahn D W 2004 Spectrochimica Acta Part B 59 327
[5] Zhang H, Lu J, Ni X 2009 J. Appl. Phys. 106 063308
[6] Zhang H C, Lu J, Ni X W 2009 Acta Phys. Sin. 58 4034 (in Chinese) [张宏超, 陆建, 倪晓武 2009 58 4034]
[7] Schwarz J, Rambo P, Diels J C 2001 Appl. Phys. B 72 343
[8] Thiyagarajan M, Scharer J 2008 J. Appl. Phys. 104 013303
[9] Lu J, Ni X W, He A Z 1996 Physic of laser and material interaction (Beijing: JiXie GongYe Press) p87 (in Chinese) [陆建 倪晓武 贺安之 1996 激光与材料相互作用物理学 (北京: 机械工业出版社) 第87页].
[10] Thiyagarajan M, Scharer J E 2008 IEEE Transactions on Plasma Science 36 2512
[11] Soubacq S, Pignolet P, Schall E, Batina J 2004 J. Phys. D: Appl. Phys. 37 2686
[12] Tang X S, Li C Y, Zhu G L, Ji X H, Feng E Y, Zhang W J, Cui Z F 2004 Chinese Journal of Lasers 31 687 (in Chinese) [唐晓闩, 李春燕, 朱光来, 季学韩, 凤尔银, 张为俊, 崔执凤 2004 中国激光 31 687]
[13] Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125
[14] Tong H F, Tang Z P 2008 Chinese Journal of High Pressure Physics 22 143 (in Chinese) [童慧峰, 唐志平 2008 高压 22 143]
计量
- 文章访问数: 8501
- PDF下载量: 550
- 被引次数: 0