-
采用基于密度泛函理论的投影缀加平面波方法和广义梯度近似加Hubbard参数的似近, 研究了锐钛矿相TiO2, N掺杂TiO2和N-V共掺杂TiO2体系的基态原子构型、电子结构. 结果表明, N掺杂后,其晶胞体积比未掺杂时要略微增大,基态构型并未发生明显变化, 而N-V共掺杂时,对称性被破坏, V原子向N原子附近靠近.计算得到的锐钛矿相TiO2带隙 Egap为3.256 eV,与实验值3.23 eV非常接近. N掺杂TiO2带隙降低了0.4 eV, 而N-V共掺杂带隙降低至2.555 eV.此外, N-V共掺杂会在价带顶和导带底之间形成受主和施主能级, 这种能级对光生电子-空穴对的分离是非常有利的,降低了再次复合的概率. 因此, N-V共掺杂TiO2可以有效地提升TiO2作为光催化剂的催化能力.
-
关键词:
- 密度泛函 /
- 广义梯度近似加Hubbard参数似近 /
- 掺杂 /
- 电子结构
The ground state atomic configurations and electronic structures of anatase TiO2, N-doped TiO2 and N-V co-doped TiO2 are studied by the projector augmented wave method and the generalized gradient approximation plus U (Hubbard correction) (GGA+U) based on the density functional theory. The results indicate that the volume of cell is slightly larger and the ground state configuration has no change significantly for N-doped TiO2, but the symmetry of cell is broken and the position of V atom is more close to N atom after co-doping with N and V. The band gap of anatase TiO2 is calculated to be 3.256 eV, which is in agreement with experimental value (3.23 eV). When N is doped, the gap is reduced by more than 0.4 eV. but for N-V co-doped system, the gap reduces to 2.555 eV. Moreover, the acceptor level and donor level, which can be formed between the valence band maximum and the conduction band minimum because of co-doping with N and V, are more favorable to the separation of photoelectron-hole pairs and reduce the rate of recombination. Therefore, the co-doping of anatase TiO2 with N and V can effectively improve the photocatalytic performance of anatase.-
Keywords:
- density functional theory /
- GGA+U /
- doped /
- electronic structure
[1] Bhatkhande D S, Pangarkar V G, Beenackers A 2011 J. Chem. Technol. Biotechnol. 77 102
[2] He X L, Cai Y Y, Zhang H M, Liang C H 2011 J. Mater. Chem. 21 475
[3] Yang L X, Xiao Y, Liu S H, Li Y, Cai Q Y, Luo S L 2010 Appl. Catal. B: Environ. 94 142
[4] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾, 刘强 2008 功能材料 39 953]
[5] Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张苑, 赵颖, 蔡宁, 熊绍珍 2008 57 5806]
[6] Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 57 438]
[7] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 59 2721]
[8] Yang K S, Dai Y, Huang B B, Han S H 2006 J. Phys. Chem. B 110 24011
[9] Yang K S, Dai Y, Huang B B 2007 J. Phys. Chem. C 111 12086
[10] Lai Y K, Huang J Y, Zhang H F, Subramaniam V P, Tang Y X, Gong D G, Sundar L, Sun L, Chen Z, Lin C J 2010 J. Hazard. Mater. 184 855
[11] Yang K S, Dai Y, Huang B B, Whangbo M H 2008 Chem. Mater. 20 6528
[12] Lu J B, Dai Y, Guo M, Yu L, Lai K R, Huang B B 2012 Appl. Phys. Lett. 100 102114
[13] Wang H D, Wan W 2011 Mater. Rev. B 25 129 (in Chinese) [王海东, 万巍 2011 材料导报 B研究篇 25 129]
[14] Chen Q L, Tang C Q 2006 J. Mater. Sci. Eng. 24 514 (in Chinese) [陈琦丽, 唐超群 2006 材料科学与工程学报 24 514]
[15] Chen Q L, Li B, Zheng G, He K H, Zheng A S 2011 Physica B 406 3841
[16] Diana V W, Xu Q C, Mahasin A S, Kok H L, Tuti M L, Timothy T Y T 2011 Appl. Catal. A: General 401 98
[17] Liu G, Li D H, Zhang R 2011 Chin. J. Struct. Chem. 30 1115
[18] Liu H L, Lu Z H, Yue L, Liu J, Gan Z H, Shu C, Zhang T, Shi J, Xiong R 2011 Appl. Surf. Sci. 257 9355
[19] Burdett J K, Hughbandks T, Miller G J 1987 J. Am. Chem. Soc. 109 3639
[20] Ma Y F, Zhang J L, Tian B Z, Chen F, Wang L Z 2010 J. Hazard. Mater. 182 386
[21] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[22] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Solovyev I V, Dederichs P H, Anisimov V I 1994 Phys. Rev. B 50 16861
[24] Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943
[25] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[26] Fuiishima A, Honda K 1972 Nature 238 37
[27] Yun J N, Zhang Z Y, Deng Z H, Zhang F C 2006 Chin. J. Semicond. 27 15373 (in Chinese) [贠江妮, 张志勇, 邓周虎, 张富春 2006 半导体学报 27 15373]
[28] Mo S D, Ching W Y 1995 Phys. Rev. B 51 13023
[29] Batzill M, Morales E H, Diebold U 2006 Phys. Rev. Lett. 96 026103
[30] Okato T, Sakano T, Obara M 2005 Phys. Rev. B 72 115124
[31] EI Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G 2001 Science 293 1467
-
[1] Bhatkhande D S, Pangarkar V G, Beenackers A 2011 J. Chem. Technol. Biotechnol. 77 102
[2] He X L, Cai Y Y, Zhang H M, Liang C H 2011 J. Mater. Chem. 21 475
[3] Yang L X, Xiao Y, Liu S H, Li Y, Cai Q Y, Luo S L 2010 Appl. Catal. B: Environ. 94 142
[4] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾, 刘强 2008 功能材料 39 953]
[5] Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张苑, 赵颖, 蔡宁, 熊绍珍 2008 57 5806]
[6] Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 57 438]
[7] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 59 2721]
[8] Yang K S, Dai Y, Huang B B, Han S H 2006 J. Phys. Chem. B 110 24011
[9] Yang K S, Dai Y, Huang B B 2007 J. Phys. Chem. C 111 12086
[10] Lai Y K, Huang J Y, Zhang H F, Subramaniam V P, Tang Y X, Gong D G, Sundar L, Sun L, Chen Z, Lin C J 2010 J. Hazard. Mater. 184 855
[11] Yang K S, Dai Y, Huang B B, Whangbo M H 2008 Chem. Mater. 20 6528
[12] Lu J B, Dai Y, Guo M, Yu L, Lai K R, Huang B B 2012 Appl. Phys. Lett. 100 102114
[13] Wang H D, Wan W 2011 Mater. Rev. B 25 129 (in Chinese) [王海东, 万巍 2011 材料导报 B研究篇 25 129]
[14] Chen Q L, Tang C Q 2006 J. Mater. Sci. Eng. 24 514 (in Chinese) [陈琦丽, 唐超群 2006 材料科学与工程学报 24 514]
[15] Chen Q L, Li B, Zheng G, He K H, Zheng A S 2011 Physica B 406 3841
[16] Diana V W, Xu Q C, Mahasin A S, Kok H L, Tuti M L, Timothy T Y T 2011 Appl. Catal. A: General 401 98
[17] Liu G, Li D H, Zhang R 2011 Chin. J. Struct. Chem. 30 1115
[18] Liu H L, Lu Z H, Yue L, Liu J, Gan Z H, Shu C, Zhang T, Shi J, Xiong R 2011 Appl. Surf. Sci. 257 9355
[19] Burdett J K, Hughbandks T, Miller G J 1987 J. Am. Chem. Soc. 109 3639
[20] Ma Y F, Zhang J L, Tian B Z, Chen F, Wang L Z 2010 J. Hazard. Mater. 182 386
[21] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[22] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Solovyev I V, Dederichs P H, Anisimov V I 1994 Phys. Rev. B 50 16861
[24] Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943
[25] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[26] Fuiishima A, Honda K 1972 Nature 238 37
[27] Yun J N, Zhang Z Y, Deng Z H, Zhang F C 2006 Chin. J. Semicond. 27 15373 (in Chinese) [贠江妮, 张志勇, 邓周虎, 张富春 2006 半导体学报 27 15373]
[28] Mo S D, Ching W Y 1995 Phys. Rev. B 51 13023
[29] Batzill M, Morales E H, Diebold U 2006 Phys. Rev. Lett. 96 026103
[30] Okato T, Sakano T, Obara M 2005 Phys. Rev. B 72 115124
[31] EI Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G 2001 Science 293 1467
计量
- 文章访问数: 6552
- PDF下载量: 1111
- 被引次数: 0