搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学

刘玉柱 肖韶荣 张成义 郑改革 陈云云

引用本文:
Citation:

离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学

刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云

Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl

Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun
PDF
导出引用
  • 大气臭氧层破坏越来越严重, 卤代烷烃在太阳紫外线辐射下解离生成破坏臭氧的游离态卤素原子, 是主要元凶之一. 本文选用碘甲烷作为校准分子, 利用离子速度成像技术和共振增强多光子电离技术测得碘甲烷在266 nm紫外光解离下产生的基态碘原子I(2P3/2)在不同聚焦电压下的离子速度影像, 得到离子速度成像系统的放大系数N=1.13. 并利用该系统研究了1, 4-氯溴丁烷在 ~234 nm紫外辐射下的解离动力学, 分析讨论了解离产生的基态Br (2P3/2)和激发态Br* (2P1/2)的速度和角度分布信息, 揭示了1, 4-氯溴丁烷在 ~234 nm紫外光解离产生基态Br原子和激发态Br* 原子的通道都是源于C-Br键排斥势能面上的快速解离. 文中通过计算碎片影像角度分布的各项异性参数值, 得到了生成基态Br(2P3/2)和激发态Br* (2P1/2) 两个解离通道中的平行跃迁和垂直跃迁比例. 另外, 本文还对氯溴甲烷, 1, 2-氯溴乙烷, 1, 3-氯溴丙烷和1, 4-氯溴丁烷在 ~234 nm下的光解动力学进行比较, 分析得到双卤代烷烃分子解离机理对烷基支链长度的依赖关系.
    Depletion of atmospheric ozone layers is more and more serious. Alkyl halides dissociate under the solar UV radiation with the product of free halogen atoms, which greatly damages the ozone layer and is the main culprit for the depletion of ozone layers. In this paper, methyl iodide is chosen as a calibration system of velocity map imaging. Velocity map images of iodine atom I (2P3/2) at different focus voltages are obtained in the dissociation of methyl iodine under an UV radiation of ~266 nm by techniques of velocity map imaging and REMPI (Resonance Enhanced Multiphoton Ionization). The magnification factor N of velocity map imaging system is measured to be 1.13. Photodissociation dynamics of 1, 4-C4H8BrCl under an UV radiation of ~234 nm is investigated on this velocity map imaging system. The speed and angular distributions of the fragments Br(2P3/2) and Br* (2P1/2) atoms in the dissociation are obtained and analyzed. Experimental results suggest that the dissociation of 1, 4-C4H8BrCl to both Br(2P3/2) and Br* (2P1/2) atoms under an UV radiation of ~234 nm happens promptly along the C-Br bond via repulsive surfaces after excitation. The anisotropy coefficient values are obtained from angular distributions of imaging of the fragments Br (2P3/2) and Br* (2P1/2) atoms, by which the ratio between perpendicular transition and parallel transition for those two dissociation channels are calculated. In addition, photodissociation mechanisms of CH2BrCl, 1, 2-C2H4BrCl, 1, 3-C3H6BrCl and 1, 4-C4H8BrCl at an UV radiation of ~234 nm are compared, and the dependences of dissociation mechanisms of dihalogen alkyl compounds on size of the alkyl radical are obtained.
    • 基金项目: 江苏省科技支撑计划(批准号: BE2010733)和南京信息工程大学科研启动基金(批准号: 20110424)资助的课题.
    • Funds: Project supported by the Scientific Research Foundation of Technology Support Program of Jiangsu Province (Grant No. BE2010733), and the Nanjing University of Information Science Technology (Grant No. 20110424).
    [1]

    Chang J S, Duewer W M 1979 Annu. Rev. Phys. Chem. 30 443

    [2]

    Wang D S, Kim M S, Choe J C, Ha T K 2001 J. Chem. Phys. 115 5454

    [3]

    Butler J H, Battle M, Bender M L, Montzka S A, Clarke A D, Saltzman E S, Sucher C M, Severinghaus J P, Elkins J W 1999 Nature 399 749

    [4]

    Krajnovich D, Butler L J, Lee Y T 1984 J. Chem. Phys. 81 3031

    [5]

    Butler L J, Hintsa E J, Shane S F, Lee Y T 1987 J. Chem. Phys. 86 2051

    [6]

    Tzeng W B, Lee Y R, Lin S M 1994 Chem. Phys. Lett. 227 467

    [7]

    Stevens J E, Kitchen D C, Waschewsky G C G, Butler L J 1995J. Chem. Phys. 102 3179

    [8]

    Wang G J, Zhang H, Zhu R S, Han K L, He G Z, Lou N Q 1999 Chem. Phys. 241 213

    [9]

    Xu H F, Liu S L, Ma X X, Dai D X, Xie J C, Sha G H 2002 Acta Phys. Sin. 51 240 (in Chinese) [徐海峰, 刘世林, 马兴孝, 戴东旭, 觧金春, 沙国河 2002 51 240]

    [10]

    Rozgonyi T, Gonzalez L 2002 J. Phys. Chem. A 106 11150

    [11]

    Huang C Q, Wei L X, Yang B, Yang R, Wang S S, Shan X B, Qi F, Zhang Y W, Sheng L S, Hao L Q, Zhou S K, Wang Z Y 2006 Acta Phys. Sin. 55 1083 (in Chinese) [黄超群, 卫立夏, 杨斌, 王思胜, 单晓斌, 齐飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚 2006 55 1083]

    [12]

    Zhou J G, Lau K C, Hassanein E, Xu H F, Tian S X, Jones B, Ng C Y 2006 J. Chem. Phys. 124 34309

    [13]

    Li R, Yan B, Zhao S T, Guo Q Q, Lian K Y, Tian C J, Pan S F 2008 Acta Phys. Sin. 57 4130 (in Chinese) [李瑞, 闫冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘宋甫 2008 57 4130]

    [14]

    Lee S H, Jung Y J, Jung K H 2000 Chem. Phys. 260 143

    [15]

    McGivern W S, Li R, Zou P, North S W 1999 J. Chem. Phys. 111 5771

    [16]

    Lee K S, Paul D, Hong K, Cho Y N, Jung K W, Kim, T K 2009 Bull. Korean Chem. Soc. 30 2962

    [17]

    Hua L, Shen H, Zhang C, Cao Z, Zhang B 2008 Chem. Phys. Lett. 460 50

    [18]

    Wei Z, Wang Y, Zheng Q, Zhao Z, Zhang B 2008 Opt. Commun. 281 287

    [19]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [20]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [21]

    Liu Y, Tang B, Shen H, Zhang S, Zhang B 2010 Opt. Express 18 5791

    [22]

    Guo H, Schatz G C 1999 J. Chem. Phys. 93 393

    [23]

    Jung Y J, Kim Y S, Kang W K, Jung K H 1997 J. Chem. Phys. 107 7187

    [24]

    Eppink A T J B, Parker D H 1999 J. Chem. Phys. 110 832

    [25]

    Wentworth W E, George R, Keith H 1969 J. Chem. Phys. 51 1791

    [26]

    Jung Y J, Park M S, Kima Y S, Jung K H, Volpp H R 1999 J. Chem. Phys. 111 4005

    [27]

    Busch G E, Wilson K R 1972 J. Chem. Phys. 56 3638

    [28]

    Mulliken R S 1940 J. Chem. Phys. 8 382

    [29]

    Zhu Q H, Cao J R, Wen Y, Zhang J M, Zhong X, Huang Y H, Fang W Q, Wu X J 1988 Chem. Phys. Lett. 144 486

    [30]

    Liu Y, Zhang Q, Zhang Y, Zhang R, Wang Y, Zhang B 2009 Chem. Phys. Chem. 10 830

  • [1]

    Chang J S, Duewer W M 1979 Annu. Rev. Phys. Chem. 30 443

    [2]

    Wang D S, Kim M S, Choe J C, Ha T K 2001 J. Chem. Phys. 115 5454

    [3]

    Butler J H, Battle M, Bender M L, Montzka S A, Clarke A D, Saltzman E S, Sucher C M, Severinghaus J P, Elkins J W 1999 Nature 399 749

    [4]

    Krajnovich D, Butler L J, Lee Y T 1984 J. Chem. Phys. 81 3031

    [5]

    Butler L J, Hintsa E J, Shane S F, Lee Y T 1987 J. Chem. Phys. 86 2051

    [6]

    Tzeng W B, Lee Y R, Lin S M 1994 Chem. Phys. Lett. 227 467

    [7]

    Stevens J E, Kitchen D C, Waschewsky G C G, Butler L J 1995J. Chem. Phys. 102 3179

    [8]

    Wang G J, Zhang H, Zhu R S, Han K L, He G Z, Lou N Q 1999 Chem. Phys. 241 213

    [9]

    Xu H F, Liu S L, Ma X X, Dai D X, Xie J C, Sha G H 2002 Acta Phys. Sin. 51 240 (in Chinese) [徐海峰, 刘世林, 马兴孝, 戴东旭, 觧金春, 沙国河 2002 51 240]

    [10]

    Rozgonyi T, Gonzalez L 2002 J. Phys. Chem. A 106 11150

    [11]

    Huang C Q, Wei L X, Yang B, Yang R, Wang S S, Shan X B, Qi F, Zhang Y W, Sheng L S, Hao L Q, Zhou S K, Wang Z Y 2006 Acta Phys. Sin. 55 1083 (in Chinese) [黄超群, 卫立夏, 杨斌, 王思胜, 单晓斌, 齐飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚 2006 55 1083]

    [12]

    Zhou J G, Lau K C, Hassanein E, Xu H F, Tian S X, Jones B, Ng C Y 2006 J. Chem. Phys. 124 34309

    [13]

    Li R, Yan B, Zhao S T, Guo Q Q, Lian K Y, Tian C J, Pan S F 2008 Acta Phys. Sin. 57 4130 (in Chinese) [李瑞, 闫冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘宋甫 2008 57 4130]

    [14]

    Lee S H, Jung Y J, Jung K H 2000 Chem. Phys. 260 143

    [15]

    McGivern W S, Li R, Zou P, North S W 1999 J. Chem. Phys. 111 5771

    [16]

    Lee K S, Paul D, Hong K, Cho Y N, Jung K W, Kim, T K 2009 Bull. Korean Chem. Soc. 30 2962

    [17]

    Hua L, Shen H, Zhang C, Cao Z, Zhang B 2008 Chem. Phys. Lett. 460 50

    [18]

    Wei Z, Wang Y, Zheng Q, Zhao Z, Zhang B 2008 Opt. Commun. 281 287

    [19]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [20]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [21]

    Liu Y, Tang B, Shen H, Zhang S, Zhang B 2010 Opt. Express 18 5791

    [22]

    Guo H, Schatz G C 1999 J. Chem. Phys. 93 393

    [23]

    Jung Y J, Kim Y S, Kang W K, Jung K H 1997 J. Chem. Phys. 107 7187

    [24]

    Eppink A T J B, Parker D H 1999 J. Chem. Phys. 110 832

    [25]

    Wentworth W E, George R, Keith H 1969 J. Chem. Phys. 51 1791

    [26]

    Jung Y J, Park M S, Kima Y S, Jung K H, Volpp H R 1999 J. Chem. Phys. 111 4005

    [27]

    Busch G E, Wilson K R 1972 J. Chem. Phys. 56 3638

    [28]

    Mulliken R S 1940 J. Chem. Phys. 8 382

    [29]

    Zhu Q H, Cao J R, Wen Y, Zhang J M, Zhong X, Huang Y H, Fang W Q, Wu X J 1988 Chem. Phys. Lett. 144 486

    [30]

    Liu Y, Zhang Q, Zhang Y, Zhang R, Wang Y, Zhang B 2009 Chem. Phys. Chem. 10 830

  • [1] 孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇. 基于拉曼散射光动态校准的分布式光纤温度传感系统.  , 2022, 71(20): 200701. doi: 10.7498/aps.71.20220611
    [2] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究.  , 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究.  , 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [4] 汪小丽, 姚关心, 杨新艳, 秦正波, 郑贤锋, 崔执凤. 甲胺分子的紫外光解离动力学实验研究.  , 2018, 67(24): 243301. doi: 10.7498/aps.67.20181731
    [5] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学.  , 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [6] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究.  , 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [7] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究.  , 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [8] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学.  , 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [9] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学.  , 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [10] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰. 氟利昂F114B2分子在飞秒紫外辐射下的解离动力学.  , 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [11] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究.  , 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [12] 刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎. 1,4-丁二硫醇分子器件电输运性质的力敏特性研究.  , 2014, 63(6): 068501. doi: 10.7498/aps.63.068501
    [13] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究.  , 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [14] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算.  , 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [15] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离.  , 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [16] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] 王 仲, 张立敏, 王 峰, 李 江, 俞书勤. 281—332nm SO+2的光碎片激发谱研究.  , 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [18] 徐海峰, 刘世林, 马兴孝, 戴东旭, 解金春, 沙国河. 紫外波段CH2I2分子的光解离动力学研究.  , 2002, 51(2): 240-246. doi: 10.7498/aps.51.240
    [19] 张杰, 程丙英, 张道中, 王立华, 赵玉英, 王天眷. PbCl2分子的光解离.  , 1988, 37(5): 743-750. doi: 10.7498/aps.37.743
    [20] 林金谷, 苏阳, 单军, 杨君慧, 傅克坚. 紫外激光解离羰基铁生成超细粉末.  , 1987, 36(9): 1194-1198. doi: 10.7498/aps.36.1194
计量
  • 文章访问数:  7207
  • PDF下载量:  541
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-19
  • 修回日期:  2012-04-01

/

返回文章
返回
Baidu
map