-
基于经典的电磁学理论, 本文建立了一套新概念空间推进装置无工质微波推力器系统, 这套装置可以直接把微波辐射能转换为推力而不需要任何推进介质. 与传统的空间推进装置不同, 该系统可以避免携带庞大的推进剂储箱并消除羽流对航天飞行器的污染. 该系统由集成在一起的圆台微波谐振腔、微波源和负载组成, 其中微波源产生的微波辐射能被输入到圆台微波谐振腔内并形成纯驻波与电磁压强梯度, 从而沿圆台微波谐振腔轴线方向形成净推力. 本文根据随遇平衡原理, 通过克服推力器本身的自重和刚性阻力, 成功地测量出无工质微波推力器产生的净推力. 结果表明: 基于经典电磁学理论建立的无工质微波推进系统可以产生净推力; 当微波源输出2.45 GHz, 802500 W的微波功率时, 推力器产生的推力分布在70720 mN范围内, 测量总误差小于12%.According to the classic theory of electromagnetic (EM) fields, we develop a propellantless microwave thruster system that can convert microwave power directly into thrust without the need of propellant. It is expected to be useful for spacecraft. Different from conventional space plasma propulsion, the system can obviate a large propellant storage tank and the issues related to plasma plume interference with the spacecraft surface. Different from huge solar sails and microwave-propelled sails, the system uses a cylindrical tapered resonance cavity as a thruster and uses an integrated microwave source to generate continuous EM wave so that the EM wave is radiated into and then reflected from the thruster to form a pure standing wave with amplified wave amplitude. The pure standing wave produces a non-uniform EM pressure distribution on the inner surface of the thruster. Consequently, a non-zero net EM thrust exerting on the symmetric axis and directing to the minor end plate of the thruster appears. In experiments a magnetron is used as a microwave source with an output microwave power of 2.45 GHz frequency. The generated net EM thrust is measured using a force-feedback test stand. The developed thruster system is experimentally demonstrated to produce thrust from 70 to 720 mN when the microwave output power is from 80 to 2500 W.
[1] Normile D 2010 Science 328 565
[2] Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 Propuls. Power 23 544
[3] Kuninaka H, Nishiyama K, Funaki I, Shimizu Y, Yamada T, Kawaguchi J 2006 IEEE Trans. Plasma Sci. 34 2125
[4] Funaki I, Kuninaka H, Toki K 2004 J. Propuls. Power 20 718
[5] Kerr R A 1999 Science 285 993
[6] Anita S 2009 J. Appl. Phys. 105 093303
[7] Smirnov A, Raitses Y, Fisch N J 2007 Phys. Plasma 14 057106
[8] Yang J, Han X W, He H Q, Mao G W 2004 J. Spacecraft Rockets 41 126
[9] Yang J, Xu Y Q, Meng Z Q, Yang T L 2008 Rev. Sci. Instrum. 79 083503
[10] Yang J, Xu Y Q, Tang J L, Mao G W, Yang T L, Tan X Q 2008 Phys. Plasma 15 023503
[11] Johnson L, Young R M, Montgomery E E IV 2007 AIP Conf. Proc. 886 207
[12] Normile D 2010 Science 328 677
[13] Abdallah C T, Chahine E, Geogriev D, Schamiloglu E 2003 AIP Conf. Proc. 664 348
[14] Wang Y P 2007 Engineering Electrodynamics (Xi'an: Xidian University Press) p32 (in Chinese) [王一平 2007 工程电动力学(西安: 西电出版社) 第32页]
[15] Yang J, Yang L, Li P F 2011 Acta Phys. Sin. 60 124101 (in Chinese) [杨涓, 杨乐, 李鹏飞 2011 60 124101]
-
[1] Normile D 2010 Science 328 565
[2] Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 Propuls. Power 23 544
[3] Kuninaka H, Nishiyama K, Funaki I, Shimizu Y, Yamada T, Kawaguchi J 2006 IEEE Trans. Plasma Sci. 34 2125
[4] Funaki I, Kuninaka H, Toki K 2004 J. Propuls. Power 20 718
[5] Kerr R A 1999 Science 285 993
[6] Anita S 2009 J. Appl. Phys. 105 093303
[7] Smirnov A, Raitses Y, Fisch N J 2007 Phys. Plasma 14 057106
[8] Yang J, Han X W, He H Q, Mao G W 2004 J. Spacecraft Rockets 41 126
[9] Yang J, Xu Y Q, Meng Z Q, Yang T L 2008 Rev. Sci. Instrum. 79 083503
[10] Yang J, Xu Y Q, Tang J L, Mao G W, Yang T L, Tan X Q 2008 Phys. Plasma 15 023503
[11] Johnson L, Young R M, Montgomery E E IV 2007 AIP Conf. Proc. 886 207
[12] Normile D 2010 Science 328 677
[13] Abdallah C T, Chahine E, Geogriev D, Schamiloglu E 2003 AIP Conf. Proc. 664 348
[14] Wang Y P 2007 Engineering Electrodynamics (Xi'an: Xidian University Press) p32 (in Chinese) [王一平 2007 工程电动力学(西安: 西电出版社) 第32页]
[15] Yang J, Yang L, Li P F 2011 Acta Phys. Sin. 60 124101 (in Chinese) [杨涓, 杨乐, 李鹏飞 2011 60 124101]
计量
- 文章访问数: 18638
- PDF下载量: 9803
- 被引次数: 0