搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe基纳米晶合金晶粒尺寸反常变化的物理机制

杨卫明 刘海顺 敦超超 赵玉成 窦林名

引用本文:
Citation:

Fe基纳米晶合金晶粒尺寸反常变化的物理机制

杨卫明, 刘海顺, 敦超超, 赵玉成, 窦林名

The mechanism of the anomalous variation of grain size for Fe-based nanocrystalline alloys

Yang Wei-Ming, Liu Hai-Shun, Dun Chao-Chao, Zhao Yu-Cheng, Dou Lin-Ming
PDF
导出引用
  • 晶粒尺寸在很大程度上决定了Fe基纳米晶合金的磁学性能,其随退火温度变化的物理机理是纳米晶领域重要的研究内容.研究了初始晶化温度与二次晶化温度之间退火1 h Fe基纳米晶合金晶粒尺寸随退火温度的变化,并建立了相应的模型.利用提出的模型分析了该温度范围内Fe基纳米晶合金晶粒尺寸随退火温度升高先减小后增大的物理机制. 研究发现,在初始晶化温度与二次晶化温度之间等时退火,当退火温度约为Fe基纳米晶合金熔点的0.6倍时其晶粒尺寸最小.在研究的温度区间内,理论研究结果与实验符合得较好. 本研究提供了一种快速获得小晶粒尺寸纳米晶合金的方法.
    The magnetic properties of the Fe-based nanocrystalline alloys are determined mainly by their grain sizes, and the mechanism of the variation of grain size with annealing temperature is an important issue in the study of nanocrystalline alloys. In this paper, the relationships between grain size and annealing temperature for these alloys within the primary crystallization temperature (Tx1) and the secondary crystallization temperature (Tx2) for 1 h are investigated, and a corresponding model is proposed. The physical mechanism of the fact that the grain size first decreases and then increases with the increase of annealing temperature is explained by using this model. It is found that the grain size has a minimum value when these alloys are isochronally annealed at the temperature near 0.6 times that of the melting point. Theoretical analysis results are found to be in agreement with the experiments data within the investigated temperature range. This investigation provides a means to obtain the smallest grain size quickly.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB226805)和 国家自然科学基金(批准号: 51074155, 50834004)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB226805) and the National Natural Science Foundation of China (Grant Nos. 51074155, 50834004).
    [1]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661

    [2]

    Shen B L, Zhou Y J, Chang C T, Inoue A 2007 J. Appl. Phys. 101 09N101

    [3]

    Fan X D, Ma A B, Men H, Xie G Q, Shen B L, Makino A, Inoue A 2011 J. Appl. Phys. 109 07A314

    [4]

    Li Y F, Feng S Q, Wang J Y 2011 Acta Phys. Sin. 60 037306 (in Chinese) [李印峰, 封素芹, 王建勇 2011 60 037306]

    [5]

    Han Y M, Wang Z, Che X H, Chen X G, Li W R, Li Y L 2009 Mater. Sci. Eng. B 156 57

    [6]

    Li A H, Lai B, Wang H J, Zhu M G, Li W 2011 Acta Phys. Sin. 60 027501 (in Chinese) [李安华, 赖彬, 王会杰, 朱明刚, 李卫 2011 60 027501]

    [7]

    Ding Y H, Li M J, Yang B H, Ma X 2011 Acta Phys. Sin. 60 097502 (in Chinese) [丁燕红, 李明吉, 杨保和, 马叙 2011 60 097502]

    [8]

    Herzer G 2005 J. Magn. Magn. Mater. 294 99

    [9]

    Yang Q M, Xu Q M, Fang Y Z, Mo C J 2009 Acta Phys. Sin. 58 4072 (in Chinese) [杨全民, 许启明, 方允樟, 莫婵娟 2009 58 4072]

    [10]

    Ji S, Yang G B, Wang R 1996 Acta Phys. Sin. 45 2061 (in Chinese) [纪松, 杨国斌, 王 润 1996 45 2061]

    [11]

    Gao J E, Li H X, Jiao Z B, Wu Y, Chen Y H, Yu T, Lu Z P 2011 Appl. Phys. Lett. 99 052504

    [12]

    Liu H S, Wu Y, Zhang G Y, Yin C H, Du Y W 2008 J. Magn. Magn. Mater. 320 1705

    [13]

    Yang Q M, Xu Q M, Fang Y Z, Wang L L, Shi F Y 2007 Acta Phys. Sin. 57 3366 (in Chinese) [杨全民, 许启明, 方允樟, 王玲玲, 施方也 2007 57 3366]

    [14]

    Wang Z, He K Y, Yin J, Zhao Y H 1997 Acta Phys. Sin. 46 2054 (in Chinese) [王治, 何开元, 尹君, 赵玉华 1997 46 2054]

    [15]

    Darling K A, Chan R H, Wong P Z, Semones J E, Scattergood R O, Koch C C 2008 Scripta Mater. 59 530

    [16]

    Ramanujan R V, Zhang Y R 2006 Phys. Rev. B 74 224408

    [17]

    Shen T D, Schwarz R B, Thompson J D 2005 Phys. Rev. B 72 014431

    [18]

    Jiang J Z 1997 Nanostr. Mater. 9 245

    [19]

    Hermann H, Mattern N, Roth S, Uebele P 1997 Phys. Rev. B 56 13888

    [20]

    Tong H Y, Ding B Z, Jiang H G, Lu K, Wang J T, Hu Z Q 1994 J. Appl. Phys. 75 654

    [21]

    Herzer G 1997 Handbook on Magnetic Materials 10 415

    [22]

    Kulik T, Hernando A 1994 J. Magn. Magn. Mater. 138 270

    [23]

    Hoa L T M 2006 J. Alloys Compd. 420 50

    [24]

    Bzazhkin V V, Larchev V I, Popova S V, Skrotskaya G G 1989 Phys. Scripta 39 338

    [25]

    Fecht H J 1995 Mater. Trans. 36 777

    [26]

    Yao B, Guo H C, Wang J, Ding B Z, Li H, Wang A M, Hu Z Q 1996 Physica B 228 379

    [27]

    Guo Y C, Wang Z X 1984 Amorphous State Physics (Beijing: Science Press) p129 (in Chinese) [郭贻诚, 王震西 1984 非晶态物理学 (北京:科学出版社) 第129页]

    [28]

    Lu K, Wang J T 1992 Sci. China. Ser. A 36 554 (in Chinese) [卢柯, 王景唐 1992 中国科学A辑 36 554]

    [29]

    Tang J C, Mao X Y, Li S D, Gao W L, Du Y W 2004 J. Alloys Compd. 375 233

    [30]

    Lu K, Wang J T 1992 Sci. China. Ser. A 36 414 (in Chinese) [卢柯, 王景唐 1992 中国科学A辑 36 414]

    [31]

    Lu K 1994 Acta Metall. Sin. 30 B1 (in Chinese) [卢柯 1994 金属学报 30 B1]

    [32]

    Liang X, Kulik T, Ferenc J, Xu B 2007 J. Magn. Magn. Mater. 308 227

    [33]

    Ghannami M E I, Kulik T, Hernando A, Fernández B L, Gómez S J C, Gorria P, Barandiarán J M 1994 J. Magn. Magn. Mater. 133 314

    [34]

    Zhang S Y 2004 J. Magn. Mater. Devices 35 1 (in Chinese) [张世远 2004 磁性材料及器件 35 1]

  • [1]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661

    [2]

    Shen B L, Zhou Y J, Chang C T, Inoue A 2007 J. Appl. Phys. 101 09N101

    [3]

    Fan X D, Ma A B, Men H, Xie G Q, Shen B L, Makino A, Inoue A 2011 J. Appl. Phys. 109 07A314

    [4]

    Li Y F, Feng S Q, Wang J Y 2011 Acta Phys. Sin. 60 037306 (in Chinese) [李印峰, 封素芹, 王建勇 2011 60 037306]

    [5]

    Han Y M, Wang Z, Che X H, Chen X G, Li W R, Li Y L 2009 Mater. Sci. Eng. B 156 57

    [6]

    Li A H, Lai B, Wang H J, Zhu M G, Li W 2011 Acta Phys. Sin. 60 027501 (in Chinese) [李安华, 赖彬, 王会杰, 朱明刚, 李卫 2011 60 027501]

    [7]

    Ding Y H, Li M J, Yang B H, Ma X 2011 Acta Phys. Sin. 60 097502 (in Chinese) [丁燕红, 李明吉, 杨保和, 马叙 2011 60 097502]

    [8]

    Herzer G 2005 J. Magn. Magn. Mater. 294 99

    [9]

    Yang Q M, Xu Q M, Fang Y Z, Mo C J 2009 Acta Phys. Sin. 58 4072 (in Chinese) [杨全民, 许启明, 方允樟, 莫婵娟 2009 58 4072]

    [10]

    Ji S, Yang G B, Wang R 1996 Acta Phys. Sin. 45 2061 (in Chinese) [纪松, 杨国斌, 王 润 1996 45 2061]

    [11]

    Gao J E, Li H X, Jiao Z B, Wu Y, Chen Y H, Yu T, Lu Z P 2011 Appl. Phys. Lett. 99 052504

    [12]

    Liu H S, Wu Y, Zhang G Y, Yin C H, Du Y W 2008 J. Magn. Magn. Mater. 320 1705

    [13]

    Yang Q M, Xu Q M, Fang Y Z, Wang L L, Shi F Y 2007 Acta Phys. Sin. 57 3366 (in Chinese) [杨全民, 许启明, 方允樟, 王玲玲, 施方也 2007 57 3366]

    [14]

    Wang Z, He K Y, Yin J, Zhao Y H 1997 Acta Phys. Sin. 46 2054 (in Chinese) [王治, 何开元, 尹君, 赵玉华 1997 46 2054]

    [15]

    Darling K A, Chan R H, Wong P Z, Semones J E, Scattergood R O, Koch C C 2008 Scripta Mater. 59 530

    [16]

    Ramanujan R V, Zhang Y R 2006 Phys. Rev. B 74 224408

    [17]

    Shen T D, Schwarz R B, Thompson J D 2005 Phys. Rev. B 72 014431

    [18]

    Jiang J Z 1997 Nanostr. Mater. 9 245

    [19]

    Hermann H, Mattern N, Roth S, Uebele P 1997 Phys. Rev. B 56 13888

    [20]

    Tong H Y, Ding B Z, Jiang H G, Lu K, Wang J T, Hu Z Q 1994 J. Appl. Phys. 75 654

    [21]

    Herzer G 1997 Handbook on Magnetic Materials 10 415

    [22]

    Kulik T, Hernando A 1994 J. Magn. Magn. Mater. 138 270

    [23]

    Hoa L T M 2006 J. Alloys Compd. 420 50

    [24]

    Bzazhkin V V, Larchev V I, Popova S V, Skrotskaya G G 1989 Phys. Scripta 39 338

    [25]

    Fecht H J 1995 Mater. Trans. 36 777

    [26]

    Yao B, Guo H C, Wang J, Ding B Z, Li H, Wang A M, Hu Z Q 1996 Physica B 228 379

    [27]

    Guo Y C, Wang Z X 1984 Amorphous State Physics (Beijing: Science Press) p129 (in Chinese) [郭贻诚, 王震西 1984 非晶态物理学 (北京:科学出版社) 第129页]

    [28]

    Lu K, Wang J T 1992 Sci. China. Ser. A 36 554 (in Chinese) [卢柯, 王景唐 1992 中国科学A辑 36 554]

    [29]

    Tang J C, Mao X Y, Li S D, Gao W L, Du Y W 2004 J. Alloys Compd. 375 233

    [30]

    Lu K, Wang J T 1992 Sci. China. Ser. A 36 414 (in Chinese) [卢柯, 王景唐 1992 中国科学A辑 36 414]

    [31]

    Lu K 1994 Acta Metall. Sin. 30 B1 (in Chinese) [卢柯 1994 金属学报 30 B1]

    [32]

    Liang X, Kulik T, Ferenc J, Xu B 2007 J. Magn. Magn. Mater. 308 227

    [33]

    Ghannami M E I, Kulik T, Hernando A, Fernández B L, Gómez S J C, Gorria P, Barandiarán J M 1994 J. Magn. Magn. Mater. 133 314

    [34]

    Zhang S Y 2004 J. Magn. Mater. Devices 35 1 (in Chinese) [张世远 2004 磁性材料及器件 35 1]

  • [1] 刘雨, 田强, 王新艳, 关雪飞. 基于单向测量超声背散射系数的晶粒尺寸评价高效方法.  , 2024, 73(7): 074301. doi: 10.7498/aps.73.20231959
    [2] 张凤国, 赵福祺, 刘军, 何安民, 王裴. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模.  , 2022, 71(3): 034601. doi: 10.7498/aps.71.20210702
    [3] 张凤国. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模.  , 2021, (): . doi: 10.7498/aps.70.20210702
    [4] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [5] 李珊, 李雄兵, 宋永锋, 陈超. 考虑晶粒分布的多晶体材料超声散射统一理论.  , 2018, 67(23): 234301. doi: 10.7498/aps.67.20181751
    [6] 王鹏, 徐建刚, 张云光, 宋海洋. 晶粒尺寸对纳米多晶铁变形机制影响的模拟研究.  , 2016, 65(23): 236201. doi: 10.7498/aps.65.236201
    [7] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响.  , 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [8] 徐军, 陈钢. 热处理温度对量子点粒度分布的影响.  , 2015, 64(12): 127302. doi: 10.7498/aps.64.127302
    [9] 王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生. 晶粒尺寸及衬底应力对铁电薄膜特性的影响.  , 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [10] 毛朝梁, 董显林, 王根水, 姚春华, 曹菲, 曹盛, 杨丽慧, 王永令. 晶粒尺寸对Ba0.70Sr0.30TiO3陶瓷介电性能的影响规律及机理研究.  , 2009, 58(8): 5784-5789. doi: 10.7498/aps.58.5784
    [11] 王浩, 刘国权, 栾军华, 岳景朝, 秦湘阁. 晶粒棱长、尺寸与拓扑学特征之间关系的Monte Carlo仿真研究.  , 2009, 58(13): 132-S136. doi: 10.7498/aps.58.132
    [12] 杨全民, 许启明, 方允樟, 莫婵娟. Fe基纳米晶合金的晶化机理研究.  , 2009, 58(6): 4072-4079. doi: 10.7498/aps.58.4072
    [13] 杨全民, 许启明, 杨 燚, 方允樟. 铁基纳米晶合金的介观阻抗率及应用.  , 2008, 57(2): 1008-1012. doi: 10.7498/aps.57.1008
    [14] 杨全民, 许启明, 方允樟, 王玲玲, 施方也. 铁基纳米晶合金介观结构的等效RLC并联模型.  , 2007, 56(6): 3366-3373. doi: 10.7498/aps.56.3366
    [15] 刘晃清, 王玲玲, 邹炳锁. 退火温度对ZrO2纳米材料中Eu3+离子发光的影响.  , 2007, 56(1): 556-560. doi: 10.7498/aps.56.556
    [16] 余柏林, 祁 琼, 唐新峰, 张清杰. 晶粒尺寸对CoSb3化合物热电性能的影响.  , 2005, 54(12): 5763-5768. doi: 10.7498/aps.54.5763
    [17] 冯维存, 高汝伟, 韩广兵, 朱明刚, 李 卫. NdFeB纳米复合永磁材料的交换耦合相互作用和有效各向异性.  , 2004, 53(9): 3171-3176. doi: 10.7498/aps.53.3171
    [18] 李眉娟, 胡海云, 邢修三. 多晶体金属疲劳寿命随晶粒尺寸变化的理论研究.  , 2003, 52(8): 2092-2095. doi: 10.7498/aps.52.2092
    [19] 李俊杰, 郑伟涛, 卞海蛟, 吕宪义, 姜志刚, 白亦真, 金曾孙, 赵永年. 高温退火对非晶CNx薄膜场发射特性的影响.  , 2003, 52(7): 1797-1801. doi: 10.7498/aps.52.1797
    [20] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. (Ni0.81Fe0.19)1-xCrx作为种子层对NiFe/FeMn交换偏置的影响.  , 2002, 51(12): 2849-2853. doi: 10.7498/aps.51.2849
计量
  • 文章访问数:  8380
  • PDF下载量:  782
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-30
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map