-
用密度泛函理论(DFT),在B3LYP/DZP水平上对H2O分子与VOx形成的团簇VOxH2O (x= 15)进行结构优化、能量和频率的计算,研究了团簇的稳定结构、稳定性和频率特性.结果表明VOxH2O (x= 15) 团簇的基态构型的电子态均为2A, 对称性均属C1对称点群,其中x= 1, 4, 5时基态构型中水分子已被解离.水分子倾向于吸附在团簇VOx上, 形成VOxH2O (x= 15)团簇. VOxH2O (x= 15)团簇中, VOxH2O (x= 1,4,5) 的化学活性小于VOxH2O (x= 2, 3)的化学活性.此外, H2O体系与VOx之间的结合强弱顺序为 VO4H2O VO5H2O VOH2O VO3H2O VO2H2O. VOH2O中离解出H原子的能量为2.88 eV和从VO5H2O中离解出OH基团的能量为2.38 eV, 均在可见光能量范围内,这两个化学过程有可能在可见光催化条件下进行.可以通过团簇的红外和拉曼谱特征, 初步判断水分子在VOxH2O团簇中是否离解.The equilibrium geometries, vibrational frequencies of VOxH2O (x= 15) and interactions between H2O with VOx(x= 15) are studied by using the density functional theory B3LYP/DZP method. The results show that ground states for VOxH2O (x= 15) belong to C1 point group symmetry,their electronic state is 2A, and in ground state of VOxH2O (x= 1, 4, 5) water molecule H2O is dissociated; H2O molecule is absorbed easily in VOx(x= 15) and VOxH2O(x= 15) are formed; In VOxH2O(x=15), chemical activations of VOxH2O (x= 1, 4, 5) are lower than those of VOxH2O (x= 2, 3); the sequence of interaction strength between H2O and VOx(x= 15) is VO4H2O VO5H2O VOH2O VO3H2O VO2H2O; there is possibility that OH segment and H atom are dissociated easily from VOH2O and VO5H2O, respectively by visible light exposure. Criterion that H2O molecule is dissociated in VOxH2O(x= 15) is obtained by analyzing frequency spectrum.
-
Keywords:
- density-functional theory /
- stable frame /
- ground state /
- stability
[1] Cox P A 1992 Transition Metal Oxides An Introduction to Their Electronic Structure and Properties (Oxford:Clarendon Press)
[2] Rao C N R, Raveau B 1995 Transition metal oxides (New York: VCH Publishers)
[3] Busca G, Lietti L, Ramis G, Berti F 1998 Appl. Catal. B: Environmental 18 1
[4] Pasel J, Käßner P, Montanari B, Gazzano M, Vaccari A, Makowski W, Lojewski T, Dziembaj R, Papp H 1998 Appl. Catal. B: Environmental 18 199
[5] Yamanaka I, Morimoto K, Soma M, Otsuka K 1998 J. Mol. Catal. A 133 251
[6] Viparelli P, Ciambelli P, Lisi L, Ruoppolo G, Russo G, Volta J C 1999 Appl. Catal. A 184 291
[7] Gao X T, Wachs I E 2000 J. Phys. Chem. B 104 1261
[8] Calatayud M, Silvi B, Andrés J, Beltrán A 2001 Chemical Physics Letters 333 493
[9] Calatayud M, Andrés J, Beltrán A 2001 J. Phys. Chem. A 105 9760
[10] Vyboishchikov S F, Sauer J 2000 J. Phys. Chem. A 104 10913
[11] Chertihin G V, Bare W D, Andrews L 1997 J. Phys. Chem. A 101 5090
[12] Engeser M, Weiske T, Schröder D, Schwarz H 2003 J. Phys. Chem. A 107 2855
[13] Weckhuysen B M, Keller D E 2003 Catal. Today 78 25
[14] Cortez G G, Banares M A 2002 J. Catal. 209 197
[15] Balducci G, Gigli G, Guido M 1983 J. Chem. Phys. 79 5616
[16] Pykavy M, Wüllen van C 2003 J. Phys. Chem. A 107 5566
[17] Du Q, Wang L, Sheng X H, Gao T 2006 Acta Phys. Sin. 55 6308 (in Chinese) [杜泉, 王玲, 谌晓洪, 高涛 2006 55 6308]
[18] Du Q, Wang L, Sheng X H 2008 Acta Chim. Sin. 66 23 (in Chinese) [杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和 2008 化学学报 66 23]
[19] Bjarnason A, Ridge D 1998 Organometallics 17 1889
[20] Jakubikova E, Bernstein E R, 2007 J. Phys. Chem. A 111 13339
[21] Avdeev V I, Tapilin V M 2010 J. Phys. Chem. C 114 3609
[22] Sun K Q, Zhong Q 2008 Environmental Chemistry 27 33 (in Chinese) [孙克勤, 钟秦, 黄丽娜 2008 环境化学 27 33]
[23] Becke A D 1993 J. Chem. Phys. 98 5648
[24] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[25] Hunzinaga S 1965 J. Chem. Phys. 42 1293
[26] Dunning T H 1970 J. Chem. Phys. 53 2823
[27] Zhou G D, Duan L Y 2002 Fundamentals of Structural Chemistry (Beijing: Peking university press)pp242, 178, 179 (in Chinese) [周公度, 段连云 2002 结构化学基础 (北京: 北京大学出版社)第242, 178, 179页]
[28] Chen H S, Meng F S, Li X F, Zhang S L 2009 Acta Phys. Sin. 58 0887 (in Chinese) [陈宏善, 孟凡顺, 李向富, 张素玲 2009 58 0887]
-
[1] Cox P A 1992 Transition Metal Oxides An Introduction to Their Electronic Structure and Properties (Oxford:Clarendon Press)
[2] Rao C N R, Raveau B 1995 Transition metal oxides (New York: VCH Publishers)
[3] Busca G, Lietti L, Ramis G, Berti F 1998 Appl. Catal. B: Environmental 18 1
[4] Pasel J, Käßner P, Montanari B, Gazzano M, Vaccari A, Makowski W, Lojewski T, Dziembaj R, Papp H 1998 Appl. Catal. B: Environmental 18 199
[5] Yamanaka I, Morimoto K, Soma M, Otsuka K 1998 J. Mol. Catal. A 133 251
[6] Viparelli P, Ciambelli P, Lisi L, Ruoppolo G, Russo G, Volta J C 1999 Appl. Catal. A 184 291
[7] Gao X T, Wachs I E 2000 J. Phys. Chem. B 104 1261
[8] Calatayud M, Silvi B, Andrés J, Beltrán A 2001 Chemical Physics Letters 333 493
[9] Calatayud M, Andrés J, Beltrán A 2001 J. Phys. Chem. A 105 9760
[10] Vyboishchikov S F, Sauer J 2000 J. Phys. Chem. A 104 10913
[11] Chertihin G V, Bare W D, Andrews L 1997 J. Phys. Chem. A 101 5090
[12] Engeser M, Weiske T, Schröder D, Schwarz H 2003 J. Phys. Chem. A 107 2855
[13] Weckhuysen B M, Keller D E 2003 Catal. Today 78 25
[14] Cortez G G, Banares M A 2002 J. Catal. 209 197
[15] Balducci G, Gigli G, Guido M 1983 J. Chem. Phys. 79 5616
[16] Pykavy M, Wüllen van C 2003 J. Phys. Chem. A 107 5566
[17] Du Q, Wang L, Sheng X H, Gao T 2006 Acta Phys. Sin. 55 6308 (in Chinese) [杜泉, 王玲, 谌晓洪, 高涛 2006 55 6308]
[18] Du Q, Wang L, Sheng X H 2008 Acta Chim. Sin. 66 23 (in Chinese) [杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和 2008 化学学报 66 23]
[19] Bjarnason A, Ridge D 1998 Organometallics 17 1889
[20] Jakubikova E, Bernstein E R, 2007 J. Phys. Chem. A 111 13339
[21] Avdeev V I, Tapilin V M 2010 J. Phys. Chem. C 114 3609
[22] Sun K Q, Zhong Q 2008 Environmental Chemistry 27 33 (in Chinese) [孙克勤, 钟秦, 黄丽娜 2008 环境化学 27 33]
[23] Becke A D 1993 J. Chem. Phys. 98 5648
[24] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[25] Hunzinaga S 1965 J. Chem. Phys. 42 1293
[26] Dunning T H 1970 J. Chem. Phys. 53 2823
[27] Zhou G D, Duan L Y 2002 Fundamentals of Structural Chemistry (Beijing: Peking university press)pp242, 178, 179 (in Chinese) [周公度, 段连云 2002 结构化学基础 (北京: 北京大学出版社)第242, 178, 179页]
[28] Chen H S, Meng F S, Li X F, Zhang S L 2009 Acta Phys. Sin. 58 0887 (in Chinese) [陈宏善, 孟凡顺, 李向富, 张素玲 2009 58 0887]
计量
- 文章访问数: 7444
- PDF下载量: 692
- 被引次数: 0