搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子势阱粒子群优化算法的改进研究

李盼池 王海英 宋考平 杨二龙

引用本文:
Citation:

量子势阱粒子群优化算法的改进研究

李盼池, 王海英, 宋考平, 杨二龙

Research on the improvement of quantum potential well-based particle swarm optimization algorithm

Li Pan-Chi, Wang Hai-Ying, Song Kao-Ping, Yang Er-Long
PDF
导出引用
  • 为提高量子势阱粒子群优化算法的优化能力, 通过分析目前量子势阱粒子群优化算法的设计过程, 提出了改进的量子势阱粒子群优化算法. 首先, 分别基于Delta势阱、谐振子和方势阱提出了改进的量子势阱粒子群优化算法, 并提出了基于统计量均值的控制参数设计方法. 然后, 在势阱中心的设计方面, 为强调全局最优粒子的指导作用, 提出了基于自身最优粒子加权平均和动态随机变量的两种设计策略. 实验结果表明, 三种势阱粒子群优化算法性能比较接近, 都优于原算法, 且Delta势阱模型略优于其他两种.
    To enhance the optimization ability of quantum potential well-based particle swarm optimization algorithm, the improved quantum potential well-based particle swarm optimization algorithms are proposed by analyzing the design process of current quantum potential well-based particle swarm optimization algorithms. Firstly, three improved quantum particle swarm optimization algorithms are proposed based on delta potential well, harmonic oscillator and square potential well, respectively, and then a statistic mean-based control parameter design method is presented for the proposed models. Secondly, to highlight the guiding role of the global optimal particle in designing potential well centers, two strategies are presented based on a weighted average of all self-optimal particles and dynamic random variables. The experimental results show that the performances of three improved algorithms are relatively close, the model based delta potential well are slightly better than the other two kinds of model, and the performances of three improved algorithms are superior to that of the original algorithm.
      通信作者: 李盼池, lipanchi@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号:61170132)、中国博士后科学基金(批准号:20090460864,201003405)、黑龙江省博士后科学基金(批准号:LBH-Z09289)和黑龙江省教育厅科学基金(批准号:11551015)资助的课题.
      Corresponding author: Li Pan-Chi, lipanchi@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61170132), the China Postdoctoral Science Foundation (Grant Nos. 20090460864, 201003405), the Postdoctoral Science Foundation of Heilongjiang Province, China (Grant No. LBH-Z09289), and the Scientific Research Foundation of the Education Department of Heilongjiang Province, China (Grant No. 11551015).
    [1]

    Kennedy J, Eberhart R C 1995 IEEE International Conference on Neural Networks Perth, Australian, November 27December 1, 1995 p1942

    [2]

    Guo W Z, Chen G L 2011 J. Software 22 833 (in Chinese)[郭文忠, 陈国龙 2011 软件学报 22 833]

    [3]
    [4]
    [5]

    Lin S W, Ying K C, Chen S C, Lee Z J 2008 Expert Syst. Appl. 35 1817

    [6]
    [7]

    Cai X J, Cui Z H, Zeng J C, Tan Y 2008 Inf. Process. Lett. 105 231

    [8]
    [9]

    Liu Y, Qin Z, Shi Z W, Lu J 2007 Neurocomputing 70 672

    [10]

    Zhang Y J, Shao S F 2011 Pattern Recogni. Artif. Intell. 24 90 (in Chinese)[张英杰, 邵岁锋 2011 模式识别与人工智能 24 90]

    [11]
    [12]

    Zhu H M, Wu Y P 2010 Control Decis. 25 20 (in Chinese)[朱海梅, 吴永萍 2010 控制与决策 25 20]

    [13]
    [14]
    [15]

    Samrat L S, Leandro S C, Ajith A 2009 Microelectron. Reliab. 49 660

    [16]

    Omkara S N, Khandelwala R, Ananthb T S 2009 Expert Syst. Appl. 36 11312

    [17]
    [18]
    [19]

    Meng K, Wang H G, Dong Z Y 2010 IEEE Trans. Power Syst. 25 215

    [20]

    Zhang Z S 2010 Expert Syst. Appl. 37 1800

    [21]
    [22]

    Lu S F, Sun S F, Lu Z D 2010 Energy Convers. Manage. 51 561

    [23]
    [24]
    [25]

    Gao H, Xu W B, Sun J, Tang Y L 2010 IEEE Trans. Instrum. Meas. 59 934

    [26]

    Leandro S C 2010 Expert Syst. Appl. 37 1676

    [27]
    [28]
    [29]

    Fang W, Sun J, Xie Z P, XuWB 2010 Acta Phys. Sin. 59 3686 (in Chinese)[方伟, 孙俊, 谢振平, 须文波 2010 59 3686]

    [30]

    Feng B, Xu W B 2004 IEEE Conference on Cybernetics and Intelligent Systems Singapore, December 13, 2004 p291

    [31]
    [32]
    [33]

    Feng B, Xu W B 2004 IEEE Conference on Control, Automation, Robotics and Vision Kunming, December 69, 2004, China p1454

    [34]

    Said M M, Ahmed A K 2006 IEEE Trans. Antennas Propagat. 54 2765

    [35]
    [36]
    [37]

    Clerc M, Kennedy J 2002 IEEE Trans. Evol. Comput. 6 58

    [38]
    [39]

    Zhao S Q, Zheng W 1999 Random Signal Analysis (Harbin: Harbin Institute of Technology Press) p54 (in Chinese)[赵淑清, 郑薇 1999 随机信号分析 (哈尔滨: 哈尔滨工业大学出版社) 第54页]

  • [1]

    Kennedy J, Eberhart R C 1995 IEEE International Conference on Neural Networks Perth, Australian, November 27December 1, 1995 p1942

    [2]

    Guo W Z, Chen G L 2011 J. Software 22 833 (in Chinese)[郭文忠, 陈国龙 2011 软件学报 22 833]

    [3]
    [4]
    [5]

    Lin S W, Ying K C, Chen S C, Lee Z J 2008 Expert Syst. Appl. 35 1817

    [6]
    [7]

    Cai X J, Cui Z H, Zeng J C, Tan Y 2008 Inf. Process. Lett. 105 231

    [8]
    [9]

    Liu Y, Qin Z, Shi Z W, Lu J 2007 Neurocomputing 70 672

    [10]

    Zhang Y J, Shao S F 2011 Pattern Recogni. Artif. Intell. 24 90 (in Chinese)[张英杰, 邵岁锋 2011 模式识别与人工智能 24 90]

    [11]
    [12]

    Zhu H M, Wu Y P 2010 Control Decis. 25 20 (in Chinese)[朱海梅, 吴永萍 2010 控制与决策 25 20]

    [13]
    [14]
    [15]

    Samrat L S, Leandro S C, Ajith A 2009 Microelectron. Reliab. 49 660

    [16]

    Omkara S N, Khandelwala R, Ananthb T S 2009 Expert Syst. Appl. 36 11312

    [17]
    [18]
    [19]

    Meng K, Wang H G, Dong Z Y 2010 IEEE Trans. Power Syst. 25 215

    [20]

    Zhang Z S 2010 Expert Syst. Appl. 37 1800

    [21]
    [22]

    Lu S F, Sun S F, Lu Z D 2010 Energy Convers. Manage. 51 561

    [23]
    [24]
    [25]

    Gao H, Xu W B, Sun J, Tang Y L 2010 IEEE Trans. Instrum. Meas. 59 934

    [26]

    Leandro S C 2010 Expert Syst. Appl. 37 1676

    [27]
    [28]
    [29]

    Fang W, Sun J, Xie Z P, XuWB 2010 Acta Phys. Sin. 59 3686 (in Chinese)[方伟, 孙俊, 谢振平, 须文波 2010 59 3686]

    [30]

    Feng B, Xu W B 2004 IEEE Conference on Cybernetics and Intelligent Systems Singapore, December 13, 2004 p291

    [31]
    [32]
    [33]

    Feng B, Xu W B 2004 IEEE Conference on Control, Automation, Robotics and Vision Kunming, December 69, 2004, China p1454

    [34]

    Said M M, Ahmed A K 2006 IEEE Trans. Antennas Propagat. 54 2765

    [35]
    [36]
    [37]

    Clerc M, Kennedy J 2002 IEEE Trans. Evol. Comput. 6 58

    [38]
    [39]

    Zhao S Q, Zheng W 1999 Random Signal Analysis (Harbin: Harbin Institute of Technology Press) p54 (in Chinese)[赵淑清, 郑薇 1999 随机信号分析 (哈尔滨: 哈尔滨工业大学出版社) 第54页]

  • [1] 杨晓堃, 李维, 黄永畅. 量子博弈—“PQ”问题.  , 2024, 73(3): 030301. doi: 10.7498/aps.73.20230592
    [2] 黄天龙, 吴永政, 倪明, 汪士, 叶永金. 量子噪声对Shor算法的影响.  , 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [3] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究.  , 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [4] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展.  , 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [5] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展.  , 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [6] 周宗权. 量子存储式量子计算机与无噪声光子回波.  , 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [7] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展.  , 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [8] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展.  , 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [9] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展.  , 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [10] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法.  , 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [11] 陈然一鎏, 赵犇池, 宋旨欣, 赵炫强, 王琨, 王鑫. 混合量子-经典算法: 基础、设计与应用.  , 2021, 70(21): 210302. doi: 10.7498/aps.70.20210985
    [12] 王芙蓉, 杨帆, 张亚, 李世中, 王鹤峰. 基于奇异值分解的矩阵低秩近似量子算法.  , 2021, 70(15): 150201. doi: 10.7498/aps.70.20210411
    [13] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用.  , 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [14] 王培良, 张婷, 肖英杰. 蚁群元胞优化算法在人群疏散路径规划中的应用.  , 2020, 69(8): 080504. doi: 10.7498/aps.69.20191774
    [15] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究.  , 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [16] 范桁. 量子计算与量子模拟.  , 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [17] 李盼池, 王海英, 戴庆, 肖红. 量子过程神经网络模型算法及应用.  , 2012, 61(16): 160303. doi: 10.7498/aps.61.160303
    [18] 方伟, 孙俊, 谢振平, 须文波. 量子粒子群优化算法的收敛性分析及控制参数研究.  , 2010, 59(6): 3686-3694. doi: 10.7498/aps.59.3686
    [19] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干.  , 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌.  , 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  9136
  • PDF下载量:  1096
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-23
  • 修回日期:  2011-07-03
  • 刊出日期:  2012-03-05

/

返回文章
返回
Baidu
map