-
利用严格耦合波理论分析了纳米孔阵列薄膜的光学特性,提出将纳米孔阵列薄膜作为光伏器件 增透膜来提高器件的光吸收和转换效率.理论分析表明:纳米孔阵列薄膜比单层增透膜有更好的增透效果, 能够更好地提高光伏器件的转换效率,在400 nm600 nm波段尤为显著.纳米孔阵列薄膜的最优结构参数: 周期为500 nm,填充率为0.2,厚度为110 nm.采用微纳加工技术,在 200 m Si 探测器的增透膜上制作了不同周期的纳米孔阵列,并搭建了相应的测试系统.实验结果表明: 周期为500 nm时器件的性能提高最为明显,短路电流在400 nm1100 nm波段提高约为6%, 在400 nm600 nm波段提高约为15%;开路电压提高约为2%.纳米孔阵列薄膜能够很好地提高光伏器件的转换效率.The optical characteristic of the nanohole array film is analyzed by using rigorous coupled wave, and the nanohole array film is proposed to serve as photovoltaic device anti-reflection film to improve the device absorption and efficiency. According to theoretical analysis, nanohole array anti-reflection film has a better anti-reflection effect than the monofilm and can better enhance the photovoltaic device's efficiency, especially in a speetral range of 400 nm600 nm; the optimal period of the nanohole array is 500 nm, the optimal filling factor of the nanohole array is 0.2 and the optimal thickness of the nanohole array is 110 nm. In order to testify the optical effect of nanohole array, the nanohole arrays of different sizes are made by the micro-nano processing technology in the anti-reflection film of the 200 m Si Detector, and a relevant experimental system is set up. With the optimized nanohole arrays, the short circuit currents of the experimental sample are increased ~6% in a 4001100 nm spectral range, especially, increased ~15% in a 400 nm-600 nm spectral range.
-
Keywords:
- nanohole arrays /
- photovoltaic device /
- rigorous coupled wave /
[1] Catchpole K R, Polman A 2008 Opt. Express 16 21793
[2] Walheim S, Schäffer E, Mlynek J, Steiner U 1999 Science 283 520
[3] Stupca M, Alsalhi M, AlSaud T. Almuhanna A, Nayfeh M H 2007Appl. Phys. Lett. 91 063107
[4] Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567
[5] Pillai S, Catchpole K R, Trupke T, Green M A 2007 J. Appl. Phys.101 093105
[6] Song Y M, Yu J S, Lee Y T 2010 Opt. Lett. 35 276
[7] Han T, Meng F Y, Zhang S, Wang J Q, Cheng X M 2011 ActaPhys. Sin. 60 027303 (in Chinese) [韩涛,孟凡英,张松,汪建强,程雪梅 2011 60 027303]
[8] Hu L, Chen G 2007 Nano Lett. 7 3249
[9] Han S E, Chen G 2010 Nano Lett. 10 1012
[10] Her T H, Finlay R J, Wu C 1998 Appl. Phys. Lett. 73 1673
[11] Mei H, Wang C, Yao J 2011 Opt. Commun. 284 1072
[12] Zhao H J, Yang S L, Zhang D, Liang K Y, Cheng Z F, Shi D P2009 Acta Phys. Sin. 58 6236 (in Chinese) [赵华君,赵守良,张东,梁康有,程正富,石东平 2009 58 6236]
[13] Kong W J, Yun M J, Sun X, Liu J H, Fan Z X, Shao J D 2008 ActaPhys. Sin. 57 4904 (in Chinese) [孔伟金,云茂金,孙欣,刘均海,范正修,劭建达 2008 57 4904]
[14] Yu W X, Lu Z W, Wang P 2001 Acta Photon. Sin. 30 331(inChinese) [鱼卫星,卢振武,王鹏 2001 光子学报 30 331]
[15] Zhou C H, Wang L, Nie Y, Wang Z H 2002 Acta Phys. Sin. 51 68(in Chinese) [周传宏,王磊,聂娅, 王植恒 2002 51 68]
[16] Yu W X, Lu Z W, Wang P 2001 Acta Optica Sin. 30 331(in Chinese) [鱼卫星,卢振武,王鹏 2001 光学学报 21 980]
[17] Yu Y Q 1999 Concise Course of Electrodynamics (Beijing: PekingUniversity Press) p12 (in Chinese) [俞允强 1999 电动力学简明教程(北京: 北京大学出版社) 第12页]
[18] Palik E D 1985 Handbook of Optical Constants of Solids (3rd Ed)(Orlando, FL:Academic) p531
[19] Feng N N, Michel J, Zeng L 2007 IEEE Trans. Electron Dev. 541926
[20] Yang G G 2008 Micro-Optics and System (Zhejiang: ZhejiangUniversity Press) p82 (in Chinese) [杨国光 2008 微光学与系统(杭州: 浙江大学出版社) 第82页]
[21] Ni X Y 2007 Preparation of Nano-Material (Beijing: ChemicalIndustry Press) p97 (in Chinese) [倪星元 2007 纳米材料制备技术(北京: 化学工业出版社) 第97页]
-
[1] Catchpole K R, Polman A 2008 Opt. Express 16 21793
[2] Walheim S, Schäffer E, Mlynek J, Steiner U 1999 Science 283 520
[3] Stupca M, Alsalhi M, AlSaud T. Almuhanna A, Nayfeh M H 2007Appl. Phys. Lett. 91 063107
[4] Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567
[5] Pillai S, Catchpole K R, Trupke T, Green M A 2007 J. Appl. Phys.101 093105
[6] Song Y M, Yu J S, Lee Y T 2010 Opt. Lett. 35 276
[7] Han T, Meng F Y, Zhang S, Wang J Q, Cheng X M 2011 ActaPhys. Sin. 60 027303 (in Chinese) [韩涛,孟凡英,张松,汪建强,程雪梅 2011 60 027303]
[8] Hu L, Chen G 2007 Nano Lett. 7 3249
[9] Han S E, Chen G 2010 Nano Lett. 10 1012
[10] Her T H, Finlay R J, Wu C 1998 Appl. Phys. Lett. 73 1673
[11] Mei H, Wang C, Yao J 2011 Opt. Commun. 284 1072
[12] Zhao H J, Yang S L, Zhang D, Liang K Y, Cheng Z F, Shi D P2009 Acta Phys. Sin. 58 6236 (in Chinese) [赵华君,赵守良,张东,梁康有,程正富,石东平 2009 58 6236]
[13] Kong W J, Yun M J, Sun X, Liu J H, Fan Z X, Shao J D 2008 ActaPhys. Sin. 57 4904 (in Chinese) [孔伟金,云茂金,孙欣,刘均海,范正修,劭建达 2008 57 4904]
[14] Yu W X, Lu Z W, Wang P 2001 Acta Photon. Sin. 30 331(inChinese) [鱼卫星,卢振武,王鹏 2001 光子学报 30 331]
[15] Zhou C H, Wang L, Nie Y, Wang Z H 2002 Acta Phys. Sin. 51 68(in Chinese) [周传宏,王磊,聂娅, 王植恒 2002 51 68]
[16] Yu W X, Lu Z W, Wang P 2001 Acta Optica Sin. 30 331(in Chinese) [鱼卫星,卢振武,王鹏 2001 光学学报 21 980]
[17] Yu Y Q 1999 Concise Course of Electrodynamics (Beijing: PekingUniversity Press) p12 (in Chinese) [俞允强 1999 电动力学简明教程(北京: 北京大学出版社) 第12页]
[18] Palik E D 1985 Handbook of Optical Constants of Solids (3rd Ed)(Orlando, FL:Academic) p531
[19] Feng N N, Michel J, Zeng L 2007 IEEE Trans. Electron Dev. 541926
[20] Yang G G 2008 Micro-Optics and System (Zhejiang: ZhejiangUniversity Press) p82 (in Chinese) [杨国光 2008 微光学与系统(杭州: 浙江大学出版社) 第82页]
[21] Ni X Y 2007 Preparation of Nano-Material (Beijing: ChemicalIndustry Press) p97 (in Chinese) [倪星元 2007 纳米材料制备技术(北京: 化学工业出版社) 第97页]
计量
- 文章访问数: 7387
- PDF下载量: 526
- 被引次数: 0