搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带电粒子形成胶体晶体的有效硬球模型判据的计算机模拟验证

顾凌云 徐升华 孙祉伟

引用本文:
Citation:

带电粒子形成胶体晶体的有效硬球模型判据的计算机模拟验证

顾凌云, 徐升华, 孙祉伟

A Brownian dynamic simulation to verify the effective hard-sphere model criterion for the formation of charged colloidal crystals

Gu Ling-Yun, Xu Sheng-Hua, Sun Zhi-Wei
PDF
导出引用
  • 在对胶体晶体的研究中,带电粒子胶体晶体的形成机理比硬球胶体晶体更加复杂,对其形成条件目前还缺少有效的判断依据. 有效硬球模型判据提出以有效直径作为判断参数. 为了验证该判据的有效性,利用布朗动力学模拟研究了不同有效直径下带电粒子胶体晶体的特性. 为了更加定量地研究单因素对带电胶体晶体形成的影响,取有效直径为2.8至0.8,并对一定的有效直径,研究了粒子几何直径和排斥力不同情况下的结晶行为. 在布朗动力学模拟过程中,采用径向分布函数和键序参数方法检测体系的结构变化,并分析所形成的晶体结构. 结果表明,在判断带电粒子胶体体系能否形成有序结构方面,有效硬球模型判据有一定的合理性. 但是,并不能将有效直径作为唯一的判别参数,而是需要综合其他参数的影响,这显示出该判据的片面性.
    The mechanism for the formation of colloidal crystals in charge-stabilized colloids is more complicated than that of hard-sphere colloidal crystals. And there is still lack of available criterion for the formation of charged colloidal crystals. The effective hard-sphere model suggests a criterion in which the effective diameter is used as a crucial parameter. In order to test the validity of this criterion, the characteristics of charged colloidal crystals with different effective diameters are investigated using Brownian dynamics simulations in this study. The crystallization behaviors with different geometric particle diameters and repulsive forces are also studied with some fixed effective diameters. In the simulation, the time evolution of crystallization process and the crystal structure during the simulation are characterized by means of the radial distribution functions and bond-order parameters. The results show that the effective hard-sphere model criterion has its reasonableness to some extent. However, the effective diameter cannot be used as the only parameter that influences the formation of charged colloidal crystals. The influence of other parameters should also be taken into account, which indicates that the criterion is one-sided.
    • 基金项目: 国家自然科学基金(批准号:10972217,11032011)和中国科学院知识创新工程重要方向性项目(批准号:KJCX2-YW-L08)资助的课题.
    [1]

    Van Blaaderen A, Ruel R, Wiltzius P 1997 Nature 385 321

    [2]
    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    Velikov K P, Christova C G, Dullens R P A 2002 Science 296 106

    [5]
    [6]

    Pusey P N, van Megen W 1986 Nature 320 340

    [7]
    [8]
    [9]

    Pusey P N, van Megen W, Bartlett P, Ackerson B J, Rarity J G, Underwood S M 1989 Phys. Rev. Lett. 63 2753

    [10]

    Russel W B 2003 Nature 421 490

    [11]
    [12]

    Russel W B, Saville D A, Schowalter W R 1989 Colloidal Dispersions (Cambridge: Cambridge University Press )

    [13]
    [14]
    [15]

    Hynninen A P, Dijkstra M 2003 Phys. Rev. E 68 021407

    [16]
    [17]

    Schtzel K 1996 Ordering and Phase Transitions in Charged Colloids (New York: Wiley-VCH)

    [18]
    [19]

    Frenkel D 2002 Science 296 65

    [20]

    Tata B V R, Ise N 1998 Phys. Rev. E 58 2237

    [21]
    [22]

    Grier D G, Crocker J C 2000 Phys. Rev. E 61 980

    [23]
    [24]

    Liu L, Xu S H, Liu J, Duan L, Sun Z W, Lu R X, Dong P 2006 Acta Phys. Sin. 55 6168 (in Chinese) [刘 蕾、徐升华、刘 捷、段 俐、孙祉伟、刘忍肖、董 鹏 2006 55 6168]

    [25]
    [26]
    [27]

    Liu L, Xu S H, Liu J, Sun Z W 2008 J. Coll. Interf. Sci. 326 261

    [28]
    [29]

    Xu S H, Zhou H W, Sun Z W, Xie J C 2010 Phys. Rev. E 82 010401

    [30]
    [31]

    Liu L, Xu S H, Sun Z W, Duan L, Xie J C, Lin H 2008 Acta Phys. Sin. 57 7367 (in Chinese)[刘 蕾、徐升华、孙祉伟、段俐、解京昌、林 海 2008 57 7367]

    [32]

    Dixit N M, Zukoski C F 2003 J. Phys.: Condens. Matter 15 1531

    [33]
    [34]

    Okubo T 1994 Langmuir 10 3529

    [35]
    [36]

    Okubo T, Tsuchida A 2002 Forma 17 141

    [37]
    [38]

    Ishikawa M, Okubo T 2001 J. Cryst. Growth 233 408

    [39]
    [40]
    [41]

    Xu S H, Sun Z W 2007 J. Chem. Phys. 126 144903

    [42]

    Gu L Y, Xu S H, Sun Z W, Wang J T 2010 J. Coll. Interf. Sci. 350 409

    [43]
    [44]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquid (Oxford: Clarendon Press)

    [45]
    [46]
    [47]

    Ermak D L, McCammon J A 1978 J. Chem. Phys. 69 1352

    [48]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [49]
    [50]

    ten Wolde P R, Ruiz-Montero M J, Frenkel D 1995 Phys. Rev. Lett. 75 2714

    [51]
    [52]

    Kremer K, Robbins M O, Grest G S 1986 Phys. Rev. Lett. 57 2694

    [53]
  • [1]

    Van Blaaderen A, Ruel R, Wiltzius P 1997 Nature 385 321

    [2]
    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    Velikov K P, Christova C G, Dullens R P A 2002 Science 296 106

    [5]
    [6]

    Pusey P N, van Megen W 1986 Nature 320 340

    [7]
    [8]
    [9]

    Pusey P N, van Megen W, Bartlett P, Ackerson B J, Rarity J G, Underwood S M 1989 Phys. Rev. Lett. 63 2753

    [10]

    Russel W B 2003 Nature 421 490

    [11]
    [12]

    Russel W B, Saville D A, Schowalter W R 1989 Colloidal Dispersions (Cambridge: Cambridge University Press )

    [13]
    [14]
    [15]

    Hynninen A P, Dijkstra M 2003 Phys. Rev. E 68 021407

    [16]
    [17]

    Schtzel K 1996 Ordering and Phase Transitions in Charged Colloids (New York: Wiley-VCH)

    [18]
    [19]

    Frenkel D 2002 Science 296 65

    [20]

    Tata B V R, Ise N 1998 Phys. Rev. E 58 2237

    [21]
    [22]

    Grier D G, Crocker J C 2000 Phys. Rev. E 61 980

    [23]
    [24]

    Liu L, Xu S H, Liu J, Duan L, Sun Z W, Lu R X, Dong P 2006 Acta Phys. Sin. 55 6168 (in Chinese) [刘 蕾、徐升华、刘 捷、段 俐、孙祉伟、刘忍肖、董 鹏 2006 55 6168]

    [25]
    [26]
    [27]

    Liu L, Xu S H, Liu J, Sun Z W 2008 J. Coll. Interf. Sci. 326 261

    [28]
    [29]

    Xu S H, Zhou H W, Sun Z W, Xie J C 2010 Phys. Rev. E 82 010401

    [30]
    [31]

    Liu L, Xu S H, Sun Z W, Duan L, Xie J C, Lin H 2008 Acta Phys. Sin. 57 7367 (in Chinese)[刘 蕾、徐升华、孙祉伟、段俐、解京昌、林 海 2008 57 7367]

    [32]

    Dixit N M, Zukoski C F 2003 J. Phys.: Condens. Matter 15 1531

    [33]
    [34]

    Okubo T 1994 Langmuir 10 3529

    [35]
    [36]

    Okubo T, Tsuchida A 2002 Forma 17 141

    [37]
    [38]

    Ishikawa M, Okubo T 2001 J. Cryst. Growth 233 408

    [39]
    [40]
    [41]

    Xu S H, Sun Z W 2007 J. Chem. Phys. 126 144903

    [42]

    Gu L Y, Xu S H, Sun Z W, Wang J T 2010 J. Coll. Interf. Sci. 350 409

    [43]
    [44]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquid (Oxford: Clarendon Press)

    [45]
    [46]
    [47]

    Ermak D L, McCammon J A 1978 J. Chem. Phys. 69 1352

    [48]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [49]
    [50]

    ten Wolde P R, Ruiz-Montero M J, Frenkel D 1995 Phys. Rev. Lett. 75 2714

    [51]
    [52]

    Kremer K, Robbins M O, Grest G S 1986 Phys. Rev. Lett. 57 2694

    [53]
  • [1] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟.  , 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] 高明珠, 刘纯亮, 王洪广, 李永东, 林舒, 翟永贵. KcsA钾离子通道电学特性的布朗动力学模拟.  , 2023, 72(15): 158301. doi: 10.7498/aps.72.20230118
    [3] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [4] 赵小安, 徐升华, 周宏伟, 孙祉伟. 电解质浓度对胶体粒子表面有效电荷的影响.  , 2021, 70(5): 056402. doi: 10.7498/aps.70.20201472
    [5] 刘晓威, 张可烨. 有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学.  , 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [6] 王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰. 带电胶体粒子弹性有效电荷测量的理论改进.  , 2017, 66(6): 066102. doi: 10.7498/aps.66.066102
    [7] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究.  , 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [8] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟.  , 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [9] 钟时, 杨修群, 郭维栋. 局地零平面位移对非均匀地表有效空气动力学参数的影响.  , 2013, 62(14): 144212. doi: 10.7498/aps.62.144212
    [10] 黄瑾, 钟中, 郭维栋, 卢伟. 非均匀地表空气动力学有效粗糙度的统计特征.  , 2013, 62(5): 054204. doi: 10.7498/aps.62.054204
    [11] 霍雅静, 李军刚. 利用因式化纠缠模拟纠缠动力学行为的有效性研究.  , 2012, 61(21): 210304. doi: 10.7498/aps.61.210304
    [12] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法.  , 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [13] 陈育祥, 谢国锋, 马颖, 周益春. BaTiO3晶体结构及弹性的分子动力学模拟.  , 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [14] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟.  , 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [15] 付文玉, 侯锡苗, 贺丽霞, 郑志刚. 少体硬球系统的动力学与统计研究.  , 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [16] 张德生, 董孝义, 张伟刚, 王 志. 用阶跃有效折射率模型研究光子晶体光纤色散特性.  , 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [17] 杨 涛, 何冬慧, 张磬兰, 马红孺. 电解液中带电平板与带电胶体球之间的有效相互作用.  , 2005, 54(12): 5937-5942. doi: 10.7498/aps.54.5937
    [18] 张海燕, GNgele, 马红孺. 二分量带电胶体悬浮系统的等效硬球模型.  , 2002, 51(8): 1892-1896. doi: 10.7498/aps.51.1892
    [19] 应和平, 季达人. 一种有效的量子Monte Carlo模拟方法及其关于二维反铁磁Heisenberg模型的研究.  , 1993, 42(11): 1845-1850. doi: 10.7498/aps.42.1845
    [20] 陈宗蕴, 周义昌, 黄念宁. 关于标量量子电动力学有效势的泛函算法.  , 1982, 31(5): 660-663. doi: 10.7498/aps.31.660
计量
  • 文章访问数:  7554
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-03
  • 修回日期:  2011-06-29
  • 刊出日期:  2011-06-05

/

返回文章
返回
Baidu
map