搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耗散粒子动力学处理复杂固体壁面的一种有效方法

刘谋斌 常建忠

引用本文:
Citation:

耗散粒子动力学处理复杂固体壁面的一种有效方法

刘谋斌, 常建忠

A new boundary treatment algorithm for dissipative particle dynamics

Chang Jian-Zhong, Liu Mou-Bin
PDF
导出引用
  • 耗散粒子动力学(dissipative particle dynamics,DPD)作为一种介观尺度拉格朗日型粒子方法,已经成功地应用于微纳米流动和生化科技的研究中. 复杂固体壁面的处理和壁面边界条件的实施一直是DPD方法发展及应用的一个障碍. 提出了处理复杂固体壁面的一种新的方法. 复杂固体区域通过冻结随机分布并且达到平衡状态的DPD粒子代表;所冻结的DPD粒子位于临近流动区域的一个截距内;在靠近固体壁面的流动区域中设置流动反弹层,当流动DPD粒子进入此流动层后反弹回流动区域. 应用这种固体壁面处理方法
    Dissipative particle dynamics (DPD) is a meso-scale, Lagrangian particle method, and has been successfully applied to different areas including micro- and nano-fluidics, bio- and chemical technologies. The treatment of solid matrix and the implementation of solid boundary conditions have been an important task for the development and application of the DPD method. This paper presents a new method of treating complex solid boundary. Solid grains in complex flow geometry can be represented by freezing randomly distributed DPD particles which have reached an equilibrium state. To increase computational efficiency, only the boundary DPD particles within one cut-off distance from the flow region are frozen. A thin layer in the flow region next to the solid boundary is used to bounce mobile DPD particles in this layer back to the flow region. The DPD method and this new boundary treatment algorithm are used to model the Poiseuille flow and a flow problem in a complex porous media. It is demonstrated that this new boundary treatment algorithm can effectively model complex solid matrix and correctly implement non-slip boundary condition.
    • 基金项目: 国家自然科学基金(批准号:10942004,50976108)资助的课题.
    [1]

    Rapaport D C 2004 The art of molecular dynamics simulation (Cambridge, UK: Cambridge University Press) P11

    [2]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329

    [3]

    Oran E S, Oh C K, Cybyk B Z 1998 Annual Review of Fluid Mechanics 30 403

    [4]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [5]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌、常建忠 2010 59 3654]

    [6]

    Hoogerbrugge P J, Koelman J 1992 Europhys. Lett. 19 155

    [7]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423

    [8]

    Chen S, Zhao J, Fan X J, Wang D 2006 Bull. Sci. Tech. 22 596 (in Chinese) [陈 硕、赵 钧、范西俊、王 丹 2006 科技通报 22 596]

    [9]

    Fan X, Phan-Thien N, Yong N T, Wu X, Xu D 2003 Phys. Fluids 15 DOI: 10.1063/1.1522750

    [10]

    Groot R D 2003 J. Chem. Phys. 118 11265

    [11]

    Groot R D 2000 Langmuir 16 7493

    [12]

    Dzwinel W, Yuen D A, Boryczko K 2002 J. Mol. Model. 8 33

    [13]

    Tanaka H, Araki T 2000 Phys. Rev. Lett. 85 1338

    [14]

    Schlijper A G, Hoogerbrugge P J, Manke C W 1995 J. Rheol. 39 567

    [15]

    Venturoli M, Smit B 1999 PhysChemComm 2 45

    [16]

    Liu M B, Meakin P, Huang H 2006 Phys. Fluids 18 017101

    [17]

    Liu M B, Meakin P, Huang H 2007 Water Resour. Res. 43 w04411

    [18]

    Liu M B, Meakin P, Huang H 2007 J. Comput. Phys. 222 110

    [19]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠、刘谋斌、刘汉涛 2008 57 3954]

    [20]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 1662 (in Chinese) [张阿漫、姚熊亮 2008 57 1662]

    [21]

    Liu H T, Tong Z H, An K, Ma L Q 2009 Acta Phys. Sin. 58 6569 (in Chinese) [刘汉涛、仝志辉、安 康、马理强 2009 58 6369]

    [22]

    Zhang A M 2008 Chin. Phys. B 17 927

    [23]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [24]

    Revenga M, Zuniga I, Espanol P 1998 Int. J. Mod. Phys. C 9 1319

    [25]

    Revenga M, Zuniga I, Espanol P 1999 Comput. Phys. Commun. 121 309

    [26]

    Wang L, Ge W, Li J 2006 Comput. Phys. Commun. 174 386

    [27]

    Willemsen S M, Hoefsloot H C J, Iedema P D 2000 Int. J. Mod. Phys. C 11 881

    [28]

    Duong-Hong D, Phan-Thien N, Fan X 2004 Comput. Mech. 35 24

    [29]

    Espanol P, Warren P 1995 Europhys. Lett. 30 191

    [30]

    Liu G R, Liu M B 2003 Smoothed particle hydrodynamics: A meshfree particle method (Singapore: World Scientific) P150

  • [1]

    Rapaport D C 2004 The art of molecular dynamics simulation (Cambridge, UK: Cambridge University Press) P11

    [2]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329

    [3]

    Oran E S, Oh C K, Cybyk B Z 1998 Annual Review of Fluid Mechanics 30 403

    [4]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [5]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌、常建忠 2010 59 3654]

    [6]

    Hoogerbrugge P J, Koelman J 1992 Europhys. Lett. 19 155

    [7]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423

    [8]

    Chen S, Zhao J, Fan X J, Wang D 2006 Bull. Sci. Tech. 22 596 (in Chinese) [陈 硕、赵 钧、范西俊、王 丹 2006 科技通报 22 596]

    [9]

    Fan X, Phan-Thien N, Yong N T, Wu X, Xu D 2003 Phys. Fluids 15 DOI: 10.1063/1.1522750

    [10]

    Groot R D 2003 J. Chem. Phys. 118 11265

    [11]

    Groot R D 2000 Langmuir 16 7493

    [12]

    Dzwinel W, Yuen D A, Boryczko K 2002 J. Mol. Model. 8 33

    [13]

    Tanaka H, Araki T 2000 Phys. Rev. Lett. 85 1338

    [14]

    Schlijper A G, Hoogerbrugge P J, Manke C W 1995 J. Rheol. 39 567

    [15]

    Venturoli M, Smit B 1999 PhysChemComm 2 45

    [16]

    Liu M B, Meakin P, Huang H 2006 Phys. Fluids 18 017101

    [17]

    Liu M B, Meakin P, Huang H 2007 Water Resour. Res. 43 w04411

    [18]

    Liu M B, Meakin P, Huang H 2007 J. Comput. Phys. 222 110

    [19]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠、刘谋斌、刘汉涛 2008 57 3954]

    [20]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 1662 (in Chinese) [张阿漫、姚熊亮 2008 57 1662]

    [21]

    Liu H T, Tong Z H, An K, Ma L Q 2009 Acta Phys. Sin. 58 6569 (in Chinese) [刘汉涛、仝志辉、安 康、马理强 2009 58 6369]

    [22]

    Zhang A M 2008 Chin. Phys. B 17 927

    [23]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [24]

    Revenga M, Zuniga I, Espanol P 1998 Int. J. Mod. Phys. C 9 1319

    [25]

    Revenga M, Zuniga I, Espanol P 1999 Comput. Phys. Commun. 121 309

    [26]

    Wang L, Ge W, Li J 2006 Comput. Phys. Commun. 174 386

    [27]

    Willemsen S M, Hoefsloot H C J, Iedema P D 2000 Int. J. Mod. Phys. C 11 881

    [28]

    Duong-Hong D, Phan-Thien N, Fan X 2004 Comput. Mech. 35 24

    [29]

    Espanol P, Warren P 1995 Europhys. Lett. 30 191

    [30]

    Liu G R, Liu M B 2003 Smoothed particle hydrodynamics: A meshfree particle method (Singapore: World Scientific) P150

  • [1] 赖煜成, 陈苏琪, 牟兰雅, 王兆娜. 基于麦克斯韦方程组的纳米尺度电磁边界条件.  , 2021, 70(23): 230301. doi: 10.7498/aps.70.20211025
    [2] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] 张庆海, 李阳. 不可压Navier-Stokes方程的投影方法.  , 2021, 70(13): 130201. doi: 10.7498/aps.70.20210259
    [4] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌.  , 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [5] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究.  , 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [6] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件.  , 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [7] 冯德山, 杨道学, 王珣. 插值小波尺度法探地雷达数值模拟及四阶Runge Kutta辅助微分方程吸收边界条件.  , 2016, 65(23): 234102. doi: 10.7498/aps.65.234102
    [8] 刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳. 一种新型光滑粒子动力学固壁边界施加模型.  , 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [9] 刘汉涛, 江山, 王艳华, 王婵娟, 李海桥. 溶解椭圆颗粒沉降的介观尺度数值模拟.  , 2015, 64(11): 114401. doi: 10.7498/aps.64.114401
    [10] 林晨森, 陈硕, 李启良, 杨志刚. 耗散粒子动力学GPU并行计算研究.  , 2014, 63(10): 104702. doi: 10.7498/aps.63.104702
    [11] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟.  , 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [12] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟.  , 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [13] 常建忠, 刘汉涛, 刘谋斌, 苏铁熊. 介观尺度流体绕流球体的耗散粒子动力学模拟.  , 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [14] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟.  , 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [15] 谭康伯, 梁昌洪. 高频条件下运动边界的电磁场边界条件.  , 2009, 58(10): 6770-6771. doi: 10.7498/aps.58.6770
    [16] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响.  , 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [17] 梁昌洪, 褚庆昕. 运动边界的电磁场边界条件.  , 2002, 51(10): 2202-2204. doi: 10.7498/aps.51.2202
    [18] 韩一平, 吴振森. 椭球粒子电磁散射的边界条件的讨论.  , 2000, 49(1): 57-60. doi: 10.7498/aps.49.57
    [19] 凌瑞良. R(t)LC介观电路的量子力学处理.  , 1999, 48(12): 2343-2348. doi: 10.7498/aps.48.2343
    [20] 吴式玉, 周子舫. 边界条件对无序体系本征态的影响.  , 1984, 33(12): 1650-1660. doi: 10.7498/aps.33.1650
计量
  • 文章访问数:  9738
  • PDF下载量:  980
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-06
  • 修回日期:  2010-03-02
  • 刊出日期:  2010-11-15

/

返回文章
返回
Baidu
map