搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构缺陷对量子波导腔中热导的调控

聂六英 李春先 周晓萍 程芳 王成志

引用本文:
Citation:

结构缺陷对量子波导腔中热导的调控

聂六英, 李春先, 周晓萍, 程芳, 王成志

Effects of controllable defects on thermal conductance in a nanowire with a quantum box

Nie Liu-Ying, Li Chun-Xian, Zhou Xiao-Ping, Cheng Fang, Wang Cheng-Zhi
PDF
导出引用
  • 利用散射矩阵方法和标量模型,研究了低温下可调缺陷对量子波导腔的热导的影响. 改变缺陷的参数能控制热导,缺陷的尺寸和位置能导致热导的改变,而且不同种类的缺陷也能导致热导随温度的变化.
    By using the scattering-matrix method and the scalar model of elasticity, we investigate the effect of controllable defects on low temperature thermal conductance in a nanowire with a quantum box geometry. It is found that the thermal conductance can be controlled by adjusting the parameters of the defects. The size and the position of the defect can induce the variation in thermal conductance. It is also found that the behavior of the thermal conductance versus temperature is different for different types of defects.
    • 基金项目: 湖南省自然科学基金(批准号: 09JJ5005)和国家自然科学基金(批准号: 10947134,11004019)资助的课题.
    [1]

    Wang X J, Wang L L, Huang W Q, Tang L M, Chen K Q 2006 Acta Phys. Sin. 55 3649 (in Chinese) [王新军、王玲玲、黄维清、唐黎明、陈克求 2006 55 3649]

    [2]
    [3]

    Huang W Q, Chen K Q, Shuai Z G, Wang L L, Hu W Y 2004 Acta Phys. Sin. 53 2330 (in Chinese) [黄维清、陈克求、帅志刚、王玲玲、胡望宇 2004 53 2330]

    [4]
    [5]

    Chen G 1998 Phys. Rev. B 57 14958

    [6]
    [7]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927

    [8]

    Glavin B A 2001 Phys. Rev. Lett. 86 4318

    [9]
    [10]

    Zou J, Balandin A 2001 J. Appl. Phys. 89 2932

    [11]
    [12]
    [13]

    Fon W, Schwab K C, Worlock J M, Roukes M L 2002 Phys. Rev. B 66 045302

    [14]
    [15]

    Li D Y, Wu Y Y, Kim P, Shi L, Yang P D, Majumdar A 2003 Appl. Phys. Lett. 83 2934

    [16]

    Chiatti O, Nicholls J T, Proskuryakov Y Y, Lumpkin N, Farrer I, Ritchie D A 2006 Phys. Rev. Lett. 97 056601

    [17]
    [18]
    [19]

    Wang J, Wang J S 2007 Appl. Phys. Lett. 90 241908

    [20]

    Peng X F, Chen K Q, Wan Q, Zou B S, Duan W H 2010 Phys. Rev. B 81 195317

    [21]
    [22]
    [23]

    Li B W, Wang L, Hu B B 2002 Phys. Rev. Lett. 88 223901

    [24]
    [25]

    Wang J S 2007 Phys. Rev. Lett. 99 160601

    [26]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [27]
    [28]
    [29]

    Mingo N, Broido D A 2005 Phys.Rev.Lett. 95 096105

    [30]

    Chiu H Y, Deshpande V V, Ch. Postma H W, Lau C N, Miko C, Forro L, Bockrath M 2005 Phys. Rev. Lett. 95 226101

    [31]
    [32]

    Wang J S, Wang J, Zeng N 2006 Phys. Rev. B 74 033408

    [33]
    [34]

    Yamamoto T, Nakazawa Y, Watanabe K 2007 New J. Phys. 9 245

    [35]
    [36]
    [37]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [38]

    Song D, Chen G 2004 Appl. Phys. Lett. 84 687

    [39]
    [40]

    Chen D Z A, Narayanaswamy A, Chen G 2005 Phys. Rev. B 72 155435

    [41]
    [42]

    Satio K, Nakamura J, Natori A 2007 Phys. Rev. B 76 115409

    [43]
    [44]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [45]
    [46]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [47]
    [48]

    Schwab K, Henriksen E A, Worlock J M, Roukes M L 2000 Nature (London) 404 974

    [49]
    [50]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [51]
    [52]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2003 J. Phys. D: Appl. Phys. 36 3027

    [53]
    [54]

    Chang C M, Geller M R 2005 Phys. Rev. B 71 125304

    [55]
    [56]
    [57]

    Santamore D H, Cross M C 2001 Phys. Rev. Lett. 87 115502

    [58]
    [59]

    Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306

    [60]
    [61]

    Chen K Q, Li W X, Duan W H, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [62]
    [63]

    Nie L Y, Wang L L, Zhao L H, Huang W Q, Tang L M, Wang X J, Chen K Q 2006 Phys. Lett. A 359 234

    [64]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 J. Phys.: Condens. Matter 16 5049

    [65]
    [66]
    [67]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y, Zou B S 2005 J. Appl. Phys. 98 093524

    [68]
    [69]

    Tang L M, Wang L L, Chen K Q, Huang W Q, Zou B S 2006 Appl. Phys. Lett. 88 163505

    [70]
    [71]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [72]
    [73]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y 2005 Phys. Lett. A 336 245

    [74]
    [75]

    Peng X F, Chen K Q, Zou B S, Zhang Y 2007 Appl. Phys. Lett. 90 193502

    [76]
    [77]

    Tang L M, Wang Y, Wang D, Wang L L 2007 Acta Phys. Sin. 56 437 (in Chinese) [唐黎明、王 艳、王 丹、王玲玲 2007 56 437 ]

    [78]

    Xie F, Chen K Q, Wang Y G, Zhang Y 2008 J. Appl. Phys. 103 084501

    [79]
    [80]
    [81]

    Xie F, Chen K Q, Wang Y G, Wan Q, Zou B S, Zhang Y 2008 J. Appl. Phys. 104 054312

    [82]

    Yao L J, Wang L L 2008 Acta Phys. Sin. 57 3100 (in Chinese) [姚凌江、王玲玲 2008 57 3100]

    [83]
    [84]
    [85]

    Blencowe M P 1999 Phys. Rev. B 59 4992

    [86]
    [87]

    Joe Y S, Cosby R M, Dharma-Wardana M W C, Ulloa S E 1994 J. Appl. Phys. 76 4676

  • [1]

    Wang X J, Wang L L, Huang W Q, Tang L M, Chen K Q 2006 Acta Phys. Sin. 55 3649 (in Chinese) [王新军、王玲玲、黄维清、唐黎明、陈克求 2006 55 3649]

    [2]
    [3]

    Huang W Q, Chen K Q, Shuai Z G, Wang L L, Hu W Y 2004 Acta Phys. Sin. 53 2330 (in Chinese) [黄维清、陈克求、帅志刚、王玲玲、胡望宇 2004 53 2330]

    [4]
    [5]

    Chen G 1998 Phys. Rev. B 57 14958

    [6]
    [7]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927

    [8]

    Glavin B A 2001 Phys. Rev. Lett. 86 4318

    [9]
    [10]

    Zou J, Balandin A 2001 J. Appl. Phys. 89 2932

    [11]
    [12]
    [13]

    Fon W, Schwab K C, Worlock J M, Roukes M L 2002 Phys. Rev. B 66 045302

    [14]
    [15]

    Li D Y, Wu Y Y, Kim P, Shi L, Yang P D, Majumdar A 2003 Appl. Phys. Lett. 83 2934

    [16]

    Chiatti O, Nicholls J T, Proskuryakov Y Y, Lumpkin N, Farrer I, Ritchie D A 2006 Phys. Rev. Lett. 97 056601

    [17]
    [18]
    [19]

    Wang J, Wang J S 2007 Appl. Phys. Lett. 90 241908

    [20]

    Peng X F, Chen K Q, Wan Q, Zou B S, Duan W H 2010 Phys. Rev. B 81 195317

    [21]
    [22]
    [23]

    Li B W, Wang L, Hu B B 2002 Phys. Rev. Lett. 88 223901

    [24]
    [25]

    Wang J S 2007 Phys. Rev. Lett. 99 160601

    [26]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [27]
    [28]
    [29]

    Mingo N, Broido D A 2005 Phys.Rev.Lett. 95 096105

    [30]

    Chiu H Y, Deshpande V V, Ch. Postma H W, Lau C N, Miko C, Forro L, Bockrath M 2005 Phys. Rev. Lett. 95 226101

    [31]
    [32]

    Wang J S, Wang J, Zeng N 2006 Phys. Rev. B 74 033408

    [33]
    [34]

    Yamamoto T, Nakazawa Y, Watanabe K 2007 New J. Phys. 9 245

    [35]
    [36]
    [37]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [38]

    Song D, Chen G 2004 Appl. Phys. Lett. 84 687

    [39]
    [40]

    Chen D Z A, Narayanaswamy A, Chen G 2005 Phys. Rev. B 72 155435

    [41]
    [42]

    Satio K, Nakamura J, Natori A 2007 Phys. Rev. B 76 115409

    [43]
    [44]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [45]
    [46]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [47]
    [48]

    Schwab K, Henriksen E A, Worlock J M, Roukes M L 2000 Nature (London) 404 974

    [49]
    [50]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [51]
    [52]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2003 J. Phys. D: Appl. Phys. 36 3027

    [53]
    [54]

    Chang C M, Geller M R 2005 Phys. Rev. B 71 125304

    [55]
    [56]
    [57]

    Santamore D H, Cross M C 2001 Phys. Rev. Lett. 87 115502

    [58]
    [59]

    Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306

    [60]
    [61]

    Chen K Q, Li W X, Duan W H, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [62]
    [63]

    Nie L Y, Wang L L, Zhao L H, Huang W Q, Tang L M, Wang X J, Chen K Q 2006 Phys. Lett. A 359 234

    [64]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 J. Phys.: Condens. Matter 16 5049

    [65]
    [66]
    [67]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y, Zou B S 2005 J. Appl. Phys. 98 093524

    [68]
    [69]

    Tang L M, Wang L L, Chen K Q, Huang W Q, Zou B S 2006 Appl. Phys. Lett. 88 163505

    [70]
    [71]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [72]
    [73]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y 2005 Phys. Lett. A 336 245

    [74]
    [75]

    Peng X F, Chen K Q, Zou B S, Zhang Y 2007 Appl. Phys. Lett. 90 193502

    [76]
    [77]

    Tang L M, Wang Y, Wang D, Wang L L 2007 Acta Phys. Sin. 56 437 (in Chinese) [唐黎明、王 艳、王 丹、王玲玲 2007 56 437 ]

    [78]

    Xie F, Chen K Q, Wang Y G, Zhang Y 2008 J. Appl. Phys. 103 084501

    [79]
    [80]
    [81]

    Xie F, Chen K Q, Wang Y G, Wan Q, Zou B S, Zhang Y 2008 J. Appl. Phys. 104 054312

    [82]

    Yao L J, Wang L L 2008 Acta Phys. Sin. 57 3100 (in Chinese) [姚凌江、王玲玲 2008 57 3100]

    [83]
    [84]
    [85]

    Blencowe M P 1999 Phys. Rev. B 59 4992

    [86]
    [87]

    Joe Y S, Cosby R M, Dharma-Wardana M W C, Ulloa S E 1994 J. Appl. Phys. 76 4676

  • [1] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [3] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211477
    [4] 李宇昂, 吴迪, 王栋立, 胡昊, 潘毅. 基于原子操纵技术的人工量子结构研究.  , 2021, 70(2): 020701. doi: 10.7498/aps.70.20201501
    [5] 周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚. 多空穴错位分布对石墨纳米带中热输运的影响.  , 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [6] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性.  , 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [7] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质.  , 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [8] 彭小芳, 陈丽群, 罗勇锋, 刘凌虹, 王凯军. 含双T形量子结构的量子波导中声学声子输运和热导.  , 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [9] 鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新. L型石墨纳米结的热输运.  , 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [10] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导.  , 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [11] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导.  , 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [12] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响.  , 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [13] 姚凌江, 王玲玲. 含半圆弧形腔的量子波导中声学声子输运和热导特性.  , 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [14] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响.  , 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [15] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运.  , 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [16] 熊志铭, 张青川, 陈大鹏, 伍小平, 郭哲颖, 董凤良, 缪正宇, 李超波. 光学读出微梁阵列红外成像及性能分析.  , 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [17] 赵 俊, 申彩霞, 周 放, 熊季午. 磁场对La2-xSrxCuO4单晶热导的影响研究.  , 2005, 54(8): 3845-3850. doi: 10.7498/aps.54.3845
    [18] 蔡炜颖, 李志锋, 陆 卫, 李守荣, 梁平治. Si微电阻桥温度分布与热传导特性的显微Raman光谱研究.  , 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [19] 李玉璋, 徐仲英, 葛惟锟, 许继宗, 郑宝贞, 庄蔚华. 多量子阱结构中热载流子弛豫过程中的非平衡声子效应.  , 1989, 38(9): 1540-1544. doi: 10.7498/aps.38.1540
    [20] 雷啸霖, 丁秦生. 非线性电子输运中声学和光学声子的联合散射效应.  , 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
计量
  • 文章访问数:  7839
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-23
  • 修回日期:  2011-01-28
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map