-
By combining merits of both SJ structure and SiGe material, a novel super junction (SJ) SiGe power diode is presented. The two important characteristics of SJ SiGe diode are its columnar structure of alternating p/n pillars substituting n- base region of conventional Si p+n-n+ diode and its far thinner strained SiGe p+ layer, which can overcome the drawbacks of conventional Si power switching diodes, such as when the reverse blocking voltage is higher, the forward voltage drop is larger and the reverse recovery time becomes longer. For the SJ SiGe diode with 20% Ge content, the following conclusions can be obtained compared with comparable conventional Si power diodes: the breakdown voltages increase by 1.6 times, the forward voltage drop is reduced by 60 mV (at a current density of 10 A/cm2) and the softness factor S increases by 2 times. Though the reverse recovery time is shortened slightly, the peak reverse current density decreases by 17% and the soft recovery characteristics is improved notedly. The key parameters of the p and n pillar widths have imporant effects on the forward conduction characteristic, reverse blocking characteristic and reverse recovery characteristic of SJ SiGe power diode. The smaller the pillar width becomes, the higher the breakdown voltage is and the lower the reverse leakage current is, whereas the forward voltage drop increases slightly. The pillar width has no obviously monotonic effect on the reverse recovery characteristic. If the width is too small, the soft reverse recovery characteristic is degenerated. To optimize the parameter of pillar width, we can obtain excellent SJ SiGe diode with fast recovery speed, high breakdown voltage and low forward drop at the same time.
-
Keywords:
- super junction /
- SiGe diode /
- n /
- p pillars width /
- electrical characteristics
[1] Carns T K, Chun S K 1994 IEEE Trans. E D 41 1273
[2] Brown A R, Hurkx G A M, Huizing H G A, Peter M S, de Boer W B, van Berkum J G M, Zalm P C, Huang E, Koper N 1998 IEDM Tech. Dig. (San Francisco, California) p256
[3] Qi H, Gao Y 2003 IEEE Applied Power Electronics Conference and Exposition (Florida, USA) p964
[4] Gao Y, Ma L 2004 Chin. Phys. Lett. 21 414
[5] Ma L, Gao Y, Wang C L 2004 Chin. Phys.13 1114
[6] Baliga B J 1987 Modern Power Device (New York: John Wiley & Sons) p295
[7] Chen X B, Johnny K O Sin 2001 IEEE Trans. E D 48 344
[8] Duan B X, Zhang B, Li Z J 2007 Chin. Phys. 16 3754
[9] Wang C L, Sun J 2009 Chin. Phys. B 18 1231
[10] Friedhelm D. Bauer 2004 Solid-State Electronics 48 705
[11] Shu B, Dai X Y, Zhang H M 2004 Acta Phys. Sin. 53 237 (in Chinese) [舒 斌、戴显英、张鹤鸣 2004 53 237]
[12] Yu L S 2006 Semiconductor heterojunction physics (2nd ed)(Beijing: Science Press) p102 (in Chinese) [虞丽生 2006 半 导体异质结物理(第二版)(北京:科学出版社)第102页] 〖13] Rosenfeld D, Alterovitz S A 1994 Solid State Electronics 37 119
[13] Kay L E, Tang T W 1991 J. Appl. Phys. 70 1483
[14] Manku T, Nathan A 1992 IEEE Trans. E D 39 2082
[15] Chen Z M, Wang J N 1999 Foundation of Material and Physics of semiconductors (Beijing: Science Press) p224 (in Chinese) [陈治明、王建农1999 半导体器件的材料物理学基础(北京:科学出版社)第224页]
[16] Kondekar P N 2005 IEEE Conference on Electron Devices and solid-state circuits (China, Hong Kong) p551
[17] Shenoy P M, Bhalla A, Dolny G M 1999 International Symposium on Power Semiconductor Devices & ICs(Canada, Toronto) p99
[18] Ma L, Gao Y 2009 Acta Phys. Sin. 58 529 (in Chinese) [马 丽、高 勇 2009 58 529]
[19] Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C, Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese) [杨银堂、耿振海、段宝兴、贾护军、余 涔、任丽丽 2010 59 566]
-
[1] Carns T K, Chun S K 1994 IEEE Trans. E D 41 1273
[2] Brown A R, Hurkx G A M, Huizing H G A, Peter M S, de Boer W B, van Berkum J G M, Zalm P C, Huang E, Koper N 1998 IEDM Tech. Dig. (San Francisco, California) p256
[3] Qi H, Gao Y 2003 IEEE Applied Power Electronics Conference and Exposition (Florida, USA) p964
[4] Gao Y, Ma L 2004 Chin. Phys. Lett. 21 414
[5] Ma L, Gao Y, Wang C L 2004 Chin. Phys.13 1114
[6] Baliga B J 1987 Modern Power Device (New York: John Wiley & Sons) p295
[7] Chen X B, Johnny K O Sin 2001 IEEE Trans. E D 48 344
[8] Duan B X, Zhang B, Li Z J 2007 Chin. Phys. 16 3754
[9] Wang C L, Sun J 2009 Chin. Phys. B 18 1231
[10] Friedhelm D. Bauer 2004 Solid-State Electronics 48 705
[11] Shu B, Dai X Y, Zhang H M 2004 Acta Phys. Sin. 53 237 (in Chinese) [舒 斌、戴显英、张鹤鸣 2004 53 237]
[12] Yu L S 2006 Semiconductor heterojunction physics (2nd ed)(Beijing: Science Press) p102 (in Chinese) [虞丽生 2006 半 导体异质结物理(第二版)(北京:科学出版社)第102页] 〖13] Rosenfeld D, Alterovitz S A 1994 Solid State Electronics 37 119
[13] Kay L E, Tang T W 1991 J. Appl. Phys. 70 1483
[14] Manku T, Nathan A 1992 IEEE Trans. E D 39 2082
[15] Chen Z M, Wang J N 1999 Foundation of Material and Physics of semiconductors (Beijing: Science Press) p224 (in Chinese) [陈治明、王建农1999 半导体器件的材料物理学基础(北京:科学出版社)第224页]
[16] Kondekar P N 2005 IEEE Conference on Electron Devices and solid-state circuits (China, Hong Kong) p551
[17] Shenoy P M, Bhalla A, Dolny G M 1999 International Symposium on Power Semiconductor Devices & ICs(Canada, Toronto) p99
[18] Ma L, Gao Y 2009 Acta Phys. Sin. 58 529 (in Chinese) [马 丽、高 勇 2009 58 529]
[19] Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C, Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese) [杨银堂、耿振海、段宝兴、贾护军、余 涔、任丽丽 2010 59 566]
计量
- 文章访问数: 8229
- PDF下载量: 629
- 被引次数: 0