搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于扫描探针显微镜的石英音叉机械模型研究

华宝成 钱建强 王曦 姚骏恩

引用本文:
Citation:

应用于扫描探针显微镜的石英音叉机械模型研究

华宝成, 钱建强, 王曦, 姚骏恩

Mechanical model of tuning forks used in scanning probe microscopes

Qian Jian-Qiang, Wang Xi, Yao Jun-En, Hua Bao-Cheng
PDF
导出引用
  • 石英音叉作为力传感器广泛地应用于各种扫描探针显微镜,主要涉及石英音叉的同相振动和反相振动两种振动模式.通过实验方法和有限元仿真方法对石英音叉的两种振动模式进行研究,发现石英音叉的双臂之间以及双臂与音叉的基部之间都存在耦合作用,双臂之间的耦合使音叉的反相共振频率升高,双臂与基部之间的耦合使音叉的同相共振频率降低.针对两种振动模式的动态特性建立了石英音叉的机械模型并进行合理简化.简化模型是一个四弹簧三质点系统,计算了简化模型的参数.通过一个音叉臂等效质量变化与音叉反相共振频率变化之间的定量关系证明了简化机械模
    Quartz tuning forks have been widely used as force sensors in scanning probe microscopes. The anti-phase and in-phase eigenmodes of a tuning fork are involved during microscope operations. Dynamic characteristics of both eigenmodes are studied by experiments and finite element analysis simulations. It is demonstrated that elastic couplings exist between not only both the prongs but also two prongs and the base of the tuning fork. Experimental results show that the coupling between both the prongs increases the anti-phase mode eigenfrequency while the coupling between two prongs and the base of the tuning fork decreases the in-phase mode eigenfrequency. A mechanical model of the tuning fork is introduced and simplified. Parameters of the simplified model are calculated, which is described as a four-springs-three-point-masses system. The quantitative relation between the effective mass of one prong and the eigenfrequency of the anti-phase mode of the mechanical model is in good agreement with that of finite element simulations.
    • 基金项目: 国家高技术研究发展计划(批准号:2007AA12Z128)和国家自然科学基金(批准号:11074019)资助的课题.
    [1]

    Günther P, Fischer U C, Dransfeld K 1989 Appl. Phys. B 48 89

    [2]

    Edwards H, Taylor L, Duncan W, Melmed A J 1997 J. Appl. Phys. 82 980

    [3]

    Naitou Y, Ookubo N 2004 Appl. Phys. Lett. 85 2131

    [4]

    Kim K, Seo Y, Jang H, Chang S, Hong M H, Jhe W 2006 Nanotechnology 17 S201

    [5]

    Labardi M, Allegrini M 2006 Appl. Phys. Lett. 89 174104

    [6]

    Sandoz P, Friedt J M, Carry E 2008 Rev. Sci. Instrum. 79 086102

    [7]

    Naber A 1999 J. Microsc. 194 307

    [8]

    Seo Y, Jhe W, Hwang C S 2002 Appl. Phys. Lett. 80 4324

    [9]

    Karrai K, Grober R D 1995 Appl. Phys. Lett. 66 1842

    [10]

    Qin Y, Reifenberger R 2007 Rev. Sci. Instrum. 78 063704

    [11]

    Giessibl F J 2000 Appl. Phys. Lett. 76 1470

    [12]

    Seo Y, Choe H, Jhe W 2003 Appl. Phys. Lett. 83 1860

    [13]

    Giessibl F J, Reichling M 2005 Nanotechnology 16 S118

    [14]

    Liu J, Callegari A, Stark M, Chergui M 2008 Ultramicroscopy 109 81

    [15]

    Ruiter A G T, Veerman J A, van der Werf K O,van Hulst N F 1997 Appl. Phys. Lett. 71 28

    [16]

    Grober R D, Acimovic J, Schuck J, Hessman D, Kindlemann P J, Hespanha J, Morse A S, Karrai K, Tiemann I, Manus S 2000 Rev. Sci. Instrum. 71 2776

    [17]

    Rensen W H J, van Hulst N F, Ruiter A G T, West P E 1999 Appl. Phys. Lett. 75 1640

    [18]

    Seo Y, Cadden-Zimansky P, Chandrasekhar V 2005 Appl. Phys. Lett. 87 103103

    [19]

    Wang X P, Liu L, Hu H L, Zhang K 2004 Acta Phys. Sin. 53 1008 (in Chinese) [王晓平、刘 磊、胡海龙、张 琨 2004 53 1008]

    [20]

    Rechen J 2001 Ph.D. Dissertation (Zurich: Swiss Federal Institute of Technology)

    [21]

    Simon G H, Heyde M, Rust H P 2007 Nanotechnology 18 255503

    [22]

    Castellanos-Gomez A, Agrait N, Rubio-Bollinger G 2009 Nanotechnology 20 215502

    [23]

    García R, Pérez R 2002 Surf. Sci. Rep. 47 197

  • [1]

    Günther P, Fischer U C, Dransfeld K 1989 Appl. Phys. B 48 89

    [2]

    Edwards H, Taylor L, Duncan W, Melmed A J 1997 J. Appl. Phys. 82 980

    [3]

    Naitou Y, Ookubo N 2004 Appl. Phys. Lett. 85 2131

    [4]

    Kim K, Seo Y, Jang H, Chang S, Hong M H, Jhe W 2006 Nanotechnology 17 S201

    [5]

    Labardi M, Allegrini M 2006 Appl. Phys. Lett. 89 174104

    [6]

    Sandoz P, Friedt J M, Carry E 2008 Rev. Sci. Instrum. 79 086102

    [7]

    Naber A 1999 J. Microsc. 194 307

    [8]

    Seo Y, Jhe W, Hwang C S 2002 Appl. Phys. Lett. 80 4324

    [9]

    Karrai K, Grober R D 1995 Appl. Phys. Lett. 66 1842

    [10]

    Qin Y, Reifenberger R 2007 Rev. Sci. Instrum. 78 063704

    [11]

    Giessibl F J 2000 Appl. Phys. Lett. 76 1470

    [12]

    Seo Y, Choe H, Jhe W 2003 Appl. Phys. Lett. 83 1860

    [13]

    Giessibl F J, Reichling M 2005 Nanotechnology 16 S118

    [14]

    Liu J, Callegari A, Stark M, Chergui M 2008 Ultramicroscopy 109 81

    [15]

    Ruiter A G T, Veerman J A, van der Werf K O,van Hulst N F 1997 Appl. Phys. Lett. 71 28

    [16]

    Grober R D, Acimovic J, Schuck J, Hessman D, Kindlemann P J, Hespanha J, Morse A S, Karrai K, Tiemann I, Manus S 2000 Rev. Sci. Instrum. 71 2776

    [17]

    Rensen W H J, van Hulst N F, Ruiter A G T, West P E 1999 Appl. Phys. Lett. 75 1640

    [18]

    Seo Y, Cadden-Zimansky P, Chandrasekhar V 2005 Appl. Phys. Lett. 87 103103

    [19]

    Wang X P, Liu L, Hu H L, Zhang K 2004 Acta Phys. Sin. 53 1008 (in Chinese) [王晓平、刘 磊、胡海龙、张 琨 2004 53 1008]

    [20]

    Rechen J 2001 Ph.D. Dissertation (Zurich: Swiss Federal Institute of Technology)

    [21]

    Simon G H, Heyde M, Rust H P 2007 Nanotechnology 18 255503

    [22]

    Castellanos-Gomez A, Agrait N, Rubio-Bollinger G 2009 Nanotechnology 20 215502

    [23]

    García R, Pérez R 2002 Surf. Sci. Rep. 47 197

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法.  , 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展.  , 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [3] 田国, 樊贞, 陈德杨, 侯志鹏, 刘俊明, 高兴森. “针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性.  , 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [4] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究.  , 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [5] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展.  , 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [6] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究.  , 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [7] 李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂. 对甲氧基苯甲腈的单色共振双光子电离光谱.  , 2017, 66(9): 093301. doi: 10.7498/aps.66.093301
    [8] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究.  , 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [9] 张季, 张德明, 王迪, 张庆礼, 孙敦陆, 殷绍唐. Bi2ZnOB2O6单晶偏振拉曼光谱.  , 2013, 62(23): 237802. doi: 10.7498/aps.62.237802
    [10] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. 正磷酸盐晶体Ba3(PO4)2和Sr3(PO4)2高温拉曼光谱研究.  , 2013, 62(9): 097802. doi: 10.7498/aps.62.097802
    [11] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算.  , 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [12] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式.  , 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [13] 吕业刚, 梁晓琳, 谭永宏, 郑学军, 龚跃球, 何林. 微结构对Eu掺杂Bi4Ti3O12铁电薄膜铁电性能的影响.  , 2011, 60(2): 027701. doi: 10.7498/aps.60.027701
    [14] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响.  , 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [15] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [16] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型.  , 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [17] 武煜宇, 邹崇文, 徐彭寿. ZnO中H导致的缺陷态的局域振动模式研究.  , 2006, 55(10): 5466-5470. doi: 10.7498/aps.55.5466
    [18] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响.  , 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [19] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究.  , 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] 张淑仪, 俞超, 苗永智, 唐正言, 高敦堂. 扫描光声显微镜.  , 1982, 31(5): 704-708. doi: 10.7498/aps.31.704
计量
  • 文章访问数:  10249
  • PDF下载量:  5184
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-15
  • 修回日期:  2010-12-07
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map