搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4薄膜的电输运及光诱导特性研究

罗炳成 陈长乐 谢廉

引用本文:
Citation:

Fe3O4薄膜的电输运及光诱导特性研究

罗炳成, 陈长乐, 谢廉

Electrical transport and photo-induced properties in Fe3O4 film

Luo Bing-Cheng, Chen Chang-Le, Xie Lian
PDF
导出引用
  • 用脉冲激光沉积法在(111)Si衬底上成功制备了高度择优取向的Fe3O4薄膜.电阻-温度关系表明Fe3O4薄膜的Verwey转变(TV)约在122 K,低温段(TTV)输运特征满足Mott变程跳跃模型,高温段(T>TV)为小极化子输运.激光作用下的光电导实验发现,在整个温区表现为光致电阻率减小,而且低温段的电阻变化率比高温段要大很多.分析认为Fe3O4薄膜的光致电阻率变化主要与激光激发t2g电子的转移有关.
    Highly oriented Fe3O4 film was fabricated on Si (111) substrate by pulsed laser deposition. The resistivity-temperature curve shows that the Verwey transition point is about 122 K, and the electrical transport mechanism agrees with Mott varial-range hopping model and the small polaron model for temperatures below TV and above TV, repectively. The laser irradiation results in the decrease of the resistivity of the film in the whole temperature range were measured, which is attributed to the intersite transitions of Fe 3d t2g electrons.
    • 基金项目: 国家自然科学基金(批准号:60171034,61078057)和西北工业大学基础研究基金(批准号:NPU-FFR-JC200821,JC201048)资助的课题.
    [1]

    Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [2]

    Dowben P A, Skomski R 2004 J. Appl. Phys. 95 7453

    [3]

    Ren S K, Zhang F M, Du Y W 2004 Progress in Physics 24 381 [任尚坤、张凤鸣、都有为2004物理学进展24 381]

    [4]

    Li D F, Shi J R 2009 Chin. Phys. B 18 282

    [5]

    Zheng K H, Liu Z, Liu J, Hu L J, Wang D W, Chen C Y, Sun L F 2010 Chin. Phys. B 19 026101

    [6]

    Fonin M, Pentcheva R, Dadkov Yu S, Sperlich M, Vyalikh D V, Scheffler M, Rudiger U, Guntherodt G 2005 Phys. Rev. B 72 104436

    [7]

    Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, Picozzi S, Gosele U 2009 Adv. Mater. 21 4452

    [8]

    Cheng Y H, Liu H, Li H B, Zheng R K, Ringer S P 2009 J. Phys. D: Appl.Phys. 42 215004

    [9]

    Eerenstein W, Palstra T T M, Saxena S S, Hibma T 2002 Phys. Rev. Lett. 88 247204

    [10]

    Kim-Ngan N T H, Balogh A G, Meyer J D, Brotz J, Zajac M, Slezak T, Korecki J 2009 Surf. Sci. 603 1175

    [11]

    Arora S K, Wu H C, Choudhary R J, Shvets I V, Mryasov O N, Yao H Z, Ching W Y 2008 Phys. Rev. B 77 134443

    [12]

    Margulies D T, Parker F T, Spada F E, Goldman R S, Li J, Sinclair R, Berkowitz A E 1996 Phys. Rev. B 53 9175

    [13]

    Tang J K, Wang K Y, Zhou W L 2001 J. Appl. Phys. 89 7690

    [14]

    Jain S, Adeyeyea A O, Boothroyd C B 2005 J. Appl. Phys. 97 093713

    [15]

    Tiwari S, Choudhary R J, Ran P, Phase D M 2007 J. Phys.: Condens. Matter 19 176002; Shailja T, Ram P, Choudhary R J, Phase D M 2007 J. Phys.D: Appl.Phys. 40 4943

    [16]

    Wang S L, Chen C L, Wang Y L, Jin K X, Wang Y C, Ren R, Song Z M, Yuan X 2004 Acta Phys. Sin. 53 587 (in Chinese)[汪世林、陈长乐、王跃龙、金克新、王永仓、任 韧、宋宙模、袁 孝2004 53 587]

    [17]

    Yan Z J, Yuan X, Gao G M, Luo B C, Jin K X, Chen C L 2007 Chin. Phys. Lett. 24 1397

    [18]

    Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441

    [19]

    Liu H, Jiang E Y, Zheng R K, Bai H L 2003 J. Phys.:Condens. Matter 15 8003

    [20]

    Bollero A, Ziese M, Hohne R, Semmelhack H C, Kohler U, Seter A, Esquinazi P 2005 J. Magn. Magn. Mater. 285 279

    [21]

    Ziese M, Srinitiwarawong C 1998 Phys. Rev. B 58 11519

    [22]

    Gong G Q, Gupta A, Xiao G, Qian W, Dravid V P 1997 Phys. Rev. B 56 5096

    [23]

    Ihle D, Lorenz B 1986 J. Phys.C: Solid State Phys. 19 5239

    [24]

    Ramos R, Arora S K, Shvets I V 2008 Phys. Rev. B 78 214402

    [25]

    Tang J, Chen C L, Jin K X, Zhao S G 2008 Acta Phys. Sin. 57 1166 (in Chinese)[唐 晶、陈长乐、金克新、赵省贵 2008 57 1166]

    [26]

    Fontijn W F J, van der Zaag P J, Devillers M A C, Brabers V A M, Metselaar R 1997 Phys. Rev. B 56 5432

    [27]

    Park S K, Ishikawa T, Tokura Y 1998 Phys. Rev. B 58 3717

  • [1]

    Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [2]

    Dowben P A, Skomski R 2004 J. Appl. Phys. 95 7453

    [3]

    Ren S K, Zhang F M, Du Y W 2004 Progress in Physics 24 381 [任尚坤、张凤鸣、都有为2004物理学进展24 381]

    [4]

    Li D F, Shi J R 2009 Chin. Phys. B 18 282

    [5]

    Zheng K H, Liu Z, Liu J, Hu L J, Wang D W, Chen C Y, Sun L F 2010 Chin. Phys. B 19 026101

    [6]

    Fonin M, Pentcheva R, Dadkov Yu S, Sperlich M, Vyalikh D V, Scheffler M, Rudiger U, Guntherodt G 2005 Phys. Rev. B 72 104436

    [7]

    Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, Picozzi S, Gosele U 2009 Adv. Mater. 21 4452

    [8]

    Cheng Y H, Liu H, Li H B, Zheng R K, Ringer S P 2009 J. Phys. D: Appl.Phys. 42 215004

    [9]

    Eerenstein W, Palstra T T M, Saxena S S, Hibma T 2002 Phys. Rev. Lett. 88 247204

    [10]

    Kim-Ngan N T H, Balogh A G, Meyer J D, Brotz J, Zajac M, Slezak T, Korecki J 2009 Surf. Sci. 603 1175

    [11]

    Arora S K, Wu H C, Choudhary R J, Shvets I V, Mryasov O N, Yao H Z, Ching W Y 2008 Phys. Rev. B 77 134443

    [12]

    Margulies D T, Parker F T, Spada F E, Goldman R S, Li J, Sinclair R, Berkowitz A E 1996 Phys. Rev. B 53 9175

    [13]

    Tang J K, Wang K Y, Zhou W L 2001 J. Appl. Phys. 89 7690

    [14]

    Jain S, Adeyeyea A O, Boothroyd C B 2005 J. Appl. Phys. 97 093713

    [15]

    Tiwari S, Choudhary R J, Ran P, Phase D M 2007 J. Phys.: Condens. Matter 19 176002; Shailja T, Ram P, Choudhary R J, Phase D M 2007 J. Phys.D: Appl.Phys. 40 4943

    [16]

    Wang S L, Chen C L, Wang Y L, Jin K X, Wang Y C, Ren R, Song Z M, Yuan X 2004 Acta Phys. Sin. 53 587 (in Chinese)[汪世林、陈长乐、王跃龙、金克新、王永仓、任 韧、宋宙模、袁 孝2004 53 587]

    [17]

    Yan Z J, Yuan X, Gao G M, Luo B C, Jin K X, Chen C L 2007 Chin. Phys. Lett. 24 1397

    [18]

    Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441

    [19]

    Liu H, Jiang E Y, Zheng R K, Bai H L 2003 J. Phys.:Condens. Matter 15 8003

    [20]

    Bollero A, Ziese M, Hohne R, Semmelhack H C, Kohler U, Seter A, Esquinazi P 2005 J. Magn. Magn. Mater. 285 279

    [21]

    Ziese M, Srinitiwarawong C 1998 Phys. Rev. B 58 11519

    [22]

    Gong G Q, Gupta A, Xiao G, Qian W, Dravid V P 1997 Phys. Rev. B 56 5096

    [23]

    Ihle D, Lorenz B 1986 J. Phys.C: Solid State Phys. 19 5239

    [24]

    Ramos R, Arora S K, Shvets I V 2008 Phys. Rev. B 78 214402

    [25]

    Tang J, Chen C L, Jin K X, Zhao S G 2008 Acta Phys. Sin. 57 1166 (in Chinese)[唐 晶、陈长乐、金克新、赵省贵 2008 57 1166]

    [26]

    Fontijn W F J, van der Zaag P J, Devillers M A C, Brabers V A M, Metselaar R 1997 Phys. Rev. B 56 5432

    [27]

    Park S K, Ishikawa T, Tokura Y 1998 Phys. Rev. B 58 3717

  • [1] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性.  , 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] 李文宇, 霍格, 黄岩, 董丽娟, 卢学刚. 空心Fe3O4纳米微球的制备及超顺磁性.  , 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
    [3] 杨芝, 张悦, 周倩倩, 王玉华. Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究.  , 2017, 66(13): 137501. doi: 10.7498/aps.66.137501
    [4] 武振华, 李华, 严亮星, 刘炳灿, 田强. 分数维方法研究GaAs薄膜中的极化子.  , 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [5] 刘炳灿, 李华, 严亮星, 孙慧, 田强. GaAs薄膜的有效量子限制长度及其极化子特性.  , 2013, 62(19): 197302. doi: 10.7498/aps.62.197302
    [6] 杨世海, 金克新, 王晶, 罗炳成, 陈长乐. BaTiO3/p-Si异质结的整流特性和光诱导特性的研究.  , 2013, 62(14): 147305. doi: 10.7498/aps.62.147305
    [7] 任学藻, 贺树, 丛红璐, 王旭文. 两格点两电子Hubbard-Holstein模型极化子的量子纠缠特性.  , 2012, 61(12): 124207. doi: 10.7498/aps.61.124207
    [8] 赵省贵, 金克新, 罗炳成, 王建元, 陈长乐. Gd0.55Sr0.45MnO3薄膜光诱导电阻变化特性研究.  , 2012, 61(4): 047501. doi: 10.7498/aps.61.047501
    [9] 雷洁梅, 吕柳, 刘玲, 许小亮. 多孔SiO2包裹磁性纳米颗粒Fe3O4的制备与表征.  , 2011, 60(1): 017501. doi: 10.7498/aps.60.017501
    [10] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究.  , 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [11] 金克新, 赵省贵, 陈长乐. Cu掺杂La0.67Sr0.33CuxMn1-xO3薄膜的光诱导效应研究.  , 2009, 58(7): 4953-4957. doi: 10.7498/aps.58.4953
    [12] 马玉彬. Pr0.7(Sr1-xCax)0.3MnO3多晶体系中的小极化子性质.  , 2009, 58(7): 4901-4907. doi: 10.7498/aps.58.4901
    [13] 王敬平, 孟 健. 磁场下合成Fe3O4粉体的隧道磁阻.  , 2008, 57(2): 1197-1201. doi: 10.7498/aps.57.1197
    [14] 王建元, 陈长乐, 高国棉, 韩立安, 金克新. La0.82Te0.18MnO3薄膜的输运特性和光诱导效应.  , 2006, 55(12): 6617-6621. doi: 10.7498/aps.55.6617
    [15] 汪世林, 陈长乐, 王跃龙, 金克新, 王永仓, 任 韧, 宋宙模, 袁 孝. La2/3Ca1/3MnO3薄膜的光致电阻率变化特性.  , 2004, 53(2): 587-591. doi: 10.7498/aps.53.587
    [16] 陆怀先, 都有为, 王挺祥, 张毓昌. 有机物包裹的Fe3O4颗粒表面自旋钉扎效应研究.  , 1985, 34(1): 121-125. doi: 10.7498/aps.34.121
    [17] 厉彦民, 赵光安. 双极化子的能带,稳定性与热力学特性.  , 1984, 33(2): 273-276. doi: 10.7498/aps.33.273
    [18] 邢定钰, 龚昌德. 1:3 Peierls系统中的极化子.  , 1984, 33(8): 1198-1201. doi: 10.7498/aps.33.1198
    [19] 都有为, 陆怀先, 王挺祥, 王亚旗. 界面活性剂对Fe3O4磁性与穆斯堡尔谱的影响.  , 1982, 31(10): 1417-1422. doi: 10.7498/aps.31.1417
    [20] 都有为, 张毓昌, 陆怀先. 超细Fe3O4的氧化过程.  , 1981, 30(3): 424-427. doi: 10.7498/aps.30.424
计量
  • 文章访问数:  8584
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-29
  • 修回日期:  2010-05-31
  • 刊出日期:  2011-01-05

/

返回文章
返回
Baidu
map