搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空背压对霍尔推力器放电特性影响的实验研究

鄂鹏 段萍 魏立秋 白德宇 江滨浩 徐殿国

引用本文:
Citation:

真空背压对霍尔推力器放电特性影响的实验研究

鄂鹏, 段萍, 魏立秋, 白德宇, 江滨浩, 徐殿国

Experimental study of vacuum backpressure on the discharge characteristics of a Hall thruster

E Peng, Duan Ping, Wei Li-Qiu, Bai De-Yu, Jiang Bin-Hao, Xu Dian-Guo
PDF
导出引用
  • 真空背压的变化会改变进入霍尔推力器放电通道内的背景气体量,对工质的电离、电子的传导等物理过程产生影响,从而进一步影响到推力器的宏观放电特性.为分析真空背压对推力器放电的影响规律,通过向真空罐输入流量可控的氪气改变真空背压,在不同真空背压下测量通道内原子、离子的发光特性以及出口处离子流的伏安特性.分析结果表明:背景气体返流对通道内工质放电过程具有全局性的影响,提高背压会使通道内的电子温度降低、电离效率降低,并会在通道内形成一个新的电离区,且背压越高,该电离区距推力器阳极越近.
    It is found that the vacuum backpressure affects the flow of background gas into a Hall thruster channel. The flow of background gas can affect the ionization of propellants and the conductivity of electrons, and thereby affect the physical process and discharge characteristic of Hall thrusters. In order to investigate these effects, the atomic and the ionic emission spectra in the discharge channel and the ions energy distribution are measured under different vacuum backpressures. The experimental results indicate that the increase of vacuum backpressure can reduce the electron temperature and ionization efficiency of propellants and a new ionization region appears near exit plane in the channel; and moreover, it is found that the new ionization region penetrates into the channel more deeply under the higher vacuum backpressure case.
    • 基金项目: 国家自然科学基金(批准号:11005025, 10975026)、辽宁省高等学校科研计划(批准号:2006A047)、哈尔滨工业大学科研创新基金(批准号:HITNSRIF2009044)和黑龙江省博士后科学基金(批准号:LBH-Z09161)资助的课题.
    [1]

    Hegeler F, Masten G, Leiker G, Krompholz H, Kristiansen M 1993 Proceedings of the 9th IEEE Pulsed Power Conference (New Mexico:Institute of Electrical and Electronics Engineers) p237

    [2]

    Randolph T, Kim V, Kaufman H, Kozubsky K, Zhurin V V, Day M 1993 Proceedings of the 23rd International Electric Propulsion Conference (Worthingto: The Electric Rocket Propulsion Society) p95

    [3]

    Hofer R R, Peterson P Y, Gallimore A D 2001 Proceedings of the 27th International Electric Propulsion Conference (Worthingto: The Electric Rocket Propulsion Society) p45

    [4]

    Walker M L R 2005 Ph. D. Dissertation (Michigan: University of Michigan)

    [5]

    Walker M L R, Victor A L, Hofer R R, Gallimore A D 2005 J. Propul. Power 21 408

    [6]

    Geng S F, Tang D L, Zhao J, Qiu X M 2009 Acta Phys. Sin. 58 5520 (in Chinese)[耿少飞、唐德礼、赵 杰、邱孝明 2009 58 5520]

    [7]

    Hofer R R, Peterson P Y, Gallimore A D 1990 Proceedings of the 21st International Electric Propulsion Conference (Worthingto: The Electric Rocket Propulsion Society) p41

    [8]

    Yang J, Liu W Y, Zhu G Q, Mao G W 2007 Acta Phys. Sin. 56 366 (in Chinese)[杨 涓、刘文一、朱国强、毛根旺 2007 56 366]

    [9]

    Byers D, Dankanich J W 2009 Proceedings of the 31st International Electric Propulsion Conference (Worthingto: The Electric Rocket Propulsion Society) p76

    [10]

    Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Vol.21) (New York: Consultants Bureau) p375

    [11]

    Yang J, Mao G W, He H Q, Tang J L, Song J, Su W Y 2004 Acta Phys. Sin. 53 4282 (in Chinese)[杨 涓、毛根旺、何洪庆、唐金兰、宋 军、苏纬仪 2004 53 4282]

    [12]

    Bugrova A I, Desyatskov A V, Morozov A I, Kharchevnikov V K 2000 Plasma Phys. Rep. 26 715

    [13]

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 1844 (in Chinese)[于达仁、张凤奎、李 鸿、刘 辉 2009 58 1844]

    [14]

    Li Y Q, Yu D R 2006 Plasma Sci. Technol. 8 666

    [15]

    E P, Yu D R, Wu Z W, Han K 2009 Acta Phys. Sin. 58 2535(in Chinese)[鄂 鹏、于达仁、武志文、韩 轲 2009 58 2535]

    [16]

    E P 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [鄂 鹏 2009 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [17]

    E P, Duan P, Jiang B H, Liu H, Wei L Q, Xu D G 2010 Acta Phys. Sin. 59 7181 (in Chinese)[鄂 鹏、段 萍、江滨浩、刘辉、魏立秋、徐殿国 2010 59 7181]

    [18]

    Dzierzega K, Griesmann U, Nave G 2001 Phys. Scr. 63 209

    [19]

    Thorne A P 1974 Spectrophysics (London: Chapman and Hall) p162

    [20]

    Mills R L, Ray P C, Nansteel M, Xuemin C, Mayo R M, Hu J L, Dhandapani B 2003 IEEE Trans. Plasma Sci. 31 338

    [21]

    Tsurubuchi S, Kobayashi H, Hyodo M 2003 J. Phys. B 36 2629

    [22]

    Garrigues L, Boyd I D, Boeuf J P 2001 J. Propul. Power 17 772

  • [1]

    Hegeler F, Masten G, Leiker G, Krompholz H, Kristiansen M 1993 Proceedings of the 9th IEEE Pulsed Power Conference (New Mexico:Institute of Electrical and Electronics Engineers) p237

    [2]

    Randolph T, Kim V, Kaufman H, Kozubsky K, Zhurin V V, Day M 1993 Proceedings of the 23rd International Electric Propulsion Conference (Worthingto: The Electric Rocket Propulsion Society) p95

    [3]

    Hofer R R, Peterson P Y, Gallimore A D 2001 Proceedings of the 27th International Electric Propulsion Conference (Worthingto: The Electric Rocket Propulsion Society) p45

    [4]

    Walker M L R 2005 Ph. D. Dissertation (Michigan: University of Michigan)

    [5]

    Walker M L R, Victor A L, Hofer R R, Gallimore A D 2005 J. Propul. Power 21 408

    [6]

    Geng S F, Tang D L, Zhao J, Qiu X M 2009 Acta Phys. Sin. 58 5520 (in Chinese)[耿少飞、唐德礼、赵 杰、邱孝明 2009 58 5520]

    [7]

    Hofer R R, Peterson P Y, Gallimore A D 1990 Proceedings of the 21st International Electric Propulsion Conference (Worthingto: The Electric Rocket Propulsion Society) p41

    [8]

    Yang J, Liu W Y, Zhu G Q, Mao G W 2007 Acta Phys. Sin. 56 366 (in Chinese)[杨 涓、刘文一、朱国强、毛根旺 2007 56 366]

    [9]

    Byers D, Dankanich J W 2009 Proceedings of the 31st International Electric Propulsion Conference (Worthingto: The Electric Rocket Propulsion Society) p76

    [10]

    Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Vol.21) (New York: Consultants Bureau) p375

    [11]

    Yang J, Mao G W, He H Q, Tang J L, Song J, Su W Y 2004 Acta Phys. Sin. 53 4282 (in Chinese)[杨 涓、毛根旺、何洪庆、唐金兰、宋 军、苏纬仪 2004 53 4282]

    [12]

    Bugrova A I, Desyatskov A V, Morozov A I, Kharchevnikov V K 2000 Plasma Phys. Rep. 26 715

    [13]

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 1844 (in Chinese)[于达仁、张凤奎、李 鸿、刘 辉 2009 58 1844]

    [14]

    Li Y Q, Yu D R 2006 Plasma Sci. Technol. 8 666

    [15]

    E P, Yu D R, Wu Z W, Han K 2009 Acta Phys. Sin. 58 2535(in Chinese)[鄂 鹏、于达仁、武志文、韩 轲 2009 58 2535]

    [16]

    E P 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [鄂 鹏 2009 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [17]

    E P, Duan P, Jiang B H, Liu H, Wei L Q, Xu D G 2010 Acta Phys. Sin. 59 7181 (in Chinese)[鄂 鹏、段 萍、江滨浩、刘辉、魏立秋、徐殿国 2010 59 7181]

    [18]

    Dzierzega K, Griesmann U, Nave G 2001 Phys. Scr. 63 209

    [19]

    Thorne A P 1974 Spectrophysics (London: Chapman and Hall) p162

    [20]

    Mills R L, Ray P C, Nansteel M, Xuemin C, Mayo R M, Hu J L, Dhandapani B 2003 IEEE Trans. Plasma Sci. 31 338

    [21]

    Tsurubuchi S, Kobayashi H, Hyodo M 2003 J. Phys. B 36 2629

    [22]

    Garrigues L, Boyd I D, Boeuf J P 2001 J. Propul. Power 17 772

  • [1] 杨三祥, 赵以德, 代鹏, 李建鹏, 耿海, 杨俊泰, 贾艳辉, 郭宁. 羽流区磁场对霍尔推力器性能影响的二维模拟研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241331
    [2] 杨三祥, 郭宁, 贾艳辉, 耿海, 高俊, 刘家涛, 刘士永, 杨盛林. 霍尔推力器中呼吸振荡激发机理及影响因素.  , 2023, 72(8): 085201. doi: 10.7498/aps.72.20230009
    [3] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法.  , 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [4] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究.  , 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [5] 付强, 王聪, 王语菲, 常正实. 正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构.  , 2022, 71(11): 115204. doi: 10.7498/aps.71.20220086
    [6] 杨三祥, 王倩楠, 高俊, 贾艳辉, 耿海, 郭宁, 陈新伟, 袁兴龙, 张鹏. 径向磁场对霍尔推力器性能影响的数值模拟研究.  , 2022, 71(10): 105201. doi: 10.7498/aps.71.20212386
    [7] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响.  , 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [8] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性.  , 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [9] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性.  , 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [10] 王维, 杨兰均, 刘帅, 黄易之, 黄东, 吴锴. 线-铝箔电极电晕放电激励器的推力理论与实验研究.  , 2015, 64(10): 105204. doi: 10.7498/aps.64.105204
    [11] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响.  , 2013, 62(5): 055202. doi: 10.7498/aps.62.055202
    [12] 韩轲, 江滨浩, 纪延超. 霍尔效应推力器放电双稳态机理研究.  , 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [13] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响.  , 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [14] 邓立赟, 蓝红梅, 刘悦. 霍尔推力器磁场位形及其优化的数值研究.  , 2011, 60(2): 025213. doi: 10.7498/aps.60.025213
    [15] 于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍. 电子温度各向异性对霍尔推力器BN绝缘壁面鞘层特性的影响.  , 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [16] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟.  , 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [17] 张欣盟, 田修波, 巩春志, 杨士勤. 约束阴极微弧氧化放电特性研究.  , 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [18] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国. 磁场梯度对Hall推力器放电特性影响的实验研究.  , 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [19] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究.  , 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [20] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究.  , 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
计量
  • 文章访问数:  8481
  • PDF下载量:  1137
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-05
  • 修回日期:  2010-09-13
  • 刊出日期:  2010-06-05

/

返回文章
返回
Baidu
map