-
对金属-介质-金属的三层纳米三明治结构中的磁性等离子体模式特性进行了时域有限差分数值计算分析,并给出该类谐振器的品质因数变化规律.基于纳米三明治结构中的磁性等离子体模式对该种结构进行设计,研究几何构型参数以及介质材料折射率对磁性等离子体模式的调控规律.以电感电容等效电路近似理论对纳米三明治结构磁性等离子体模式谐振频率的变化规律进行理论解释,理论解释与数值计算结果符合很好.同时还研究了纳米三明治振荡器对电磁能量的限制,并从热和辐射两方面分析了该类结构的品质因数变化情况,可为基于磁性等离子体模式的新型波导及激光器结构的设计提供指导.The magnetic plasmon (MP) modes in metal-dielectric-metal nanosandwich structures are investigated numerically using finite-difference time-domain method. We demonstrate the law of the quality factor in this kind of resonator.According to the MP modes in the nanosandwich structures, we design a series of resonators of this kind in order to investigate how to tune the resonante frequencies of MP modes through tuning the geometrical parameters and the dielectric layer refractive index of resonators, and the obtained result is well consonant with our analysis by the equivalent inductance capacitance circuit. We also investigate the electromagnetic energy confinement of the nanosandwich resonators, and analyse the Q factors of these structures from thermal and radiant points of view, which will guide one in designing new waveguides and lasers based on MP modes.
-
Keywords:
- nanosandwich structures /
- magnetic plasmon modes /
- metamaterial /
- magnetic resonance
[1] Citrin D S 1995 Opt. Lett. 20 901
[2] Weber W H, Ford G W 2004 Phys. Rev. B 70 125429
[3] Wang S M, Li T, Liu H, Wang F M, Zhu S N, Zhang X 2008 Appl. Phys. Lett. 93 233102
[4] Ma H, Qu S B, Xu Z, Zhang J Q, Wang J F 2009 Chin. Phys. B 18 1025
[5] Yang Y M, Qu S B, Wang J F, Xu Z 2009 Acta Phys. Sin. 58 1031 (in Chinese) [杨一鸣、屈绍波、王甲富、徐 卓 2009 58 1031]
[6] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404
[7] Yuan H K, Chettiar U K, Cai W, Kildishev A V, Boltasseva A, Drachev V P, Shalaev V M 2007 Opt. Express 15 1076
[8] Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Science 312 892
[9] Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N, Zhang X 2006 Phys. Rev. Lett. 97 243902
[10] Dolling G, Wegener M, Schadle A, Bureger S, Iinden S 2006 Appl. Phys. Lett. 89 231118
[11] Prodan E, Radloff C, Halas N J, Nordlander P 2006 Science 302 419
[12] Ordal M A, Bell R J, Alexander R W, Long L L, Querry M R 1985 Opt. Soc. Am. 24 4493
[13] Zhu Z H, Liu H, Wang S M, Li T, Cao J X, Ye W M, Yuan X D, Zhu S N 2009 Appl. Phys. Lett. 94 103
-
[1] Citrin D S 1995 Opt. Lett. 20 901
[2] Weber W H, Ford G W 2004 Phys. Rev. B 70 125429
[3] Wang S M, Li T, Liu H, Wang F M, Zhu S N, Zhang X 2008 Appl. Phys. Lett. 93 233102
[4] Ma H, Qu S B, Xu Z, Zhang J Q, Wang J F 2009 Chin. Phys. B 18 1025
[5] Yang Y M, Qu S B, Wang J F, Xu Z 2009 Acta Phys. Sin. 58 1031 (in Chinese) [杨一鸣、屈绍波、王甲富、徐 卓 2009 58 1031]
[6] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404
[7] Yuan H K, Chettiar U K, Cai W, Kildishev A V, Boltasseva A, Drachev V P, Shalaev V M 2007 Opt. Express 15 1076
[8] Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Science 312 892
[9] Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N, Zhang X 2006 Phys. Rev. Lett. 97 243902
[10] Dolling G, Wegener M, Schadle A, Bureger S, Iinden S 2006 Appl. Phys. Lett. 89 231118
[11] Prodan E, Radloff C, Halas N J, Nordlander P 2006 Science 302 419
[12] Ordal M A, Bell R J, Alexander R W, Long L L, Querry M R 1985 Opt. Soc. Am. 24 4493
[13] Zhu Z H, Liu H, Wang S M, Li T, Cao J X, Ye W M, Yuan X D, Zhu S N 2009 Appl. Phys. Lett. 94 103
计量
- 文章访问数: 8093
- PDF下载量: 941
- 被引次数: 0