搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米多晶金属样本构建的分子动力学模拟研究

马文 祝文军 张亚林 陈开果 邓小良 经福谦

引用本文:
Citation:

纳米多晶金属样本构建的分子动力学模拟研究

马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦

Construction of metallic nanocrystalline samples by molecular dynamics simulation

Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Chen Kai-Guo, Deng Xiao-Liang, Jing Fu-Qian
PDF
导出引用
  • 研究了分子动力学模拟中纳米多晶金属样本的构建过程.首先采用Voronoi几何方法生成初始的纳米多晶铝和铜样本,然后用快速冷凝(或共轭梯度)法得到样本的局域最低能态,最后在恒温零应力周围环境下(常温常压NPT系综)退火得到最低能态样本.使用样本的残余内应力来衡量纳米多晶样本是否与实验制备的一致.通过监测这两步弛豫过程中晶界结构的变化形态、体系平均内应力和能量下降过程及具体的局域分布和不同弛豫条件下最终样本的弹性常数,发现样本的能量和残余内应力都接近实验制备的纳米多晶金属.对Voronoi几何法生成的晶界而言
    The construction of metallic nanocrystalline (NC) samples by molecular dynamics simulation is investigated. Firstly, the initial NC aluminum and copper samples are assembled by Voronoi geometrical construction method, then the local minimized energy states of the samples are obtained by quenching (or conjugate gradient method). Finally, the simulated annealing method in normal pressure and temperature condition ensembles at zero pressure is used to approximate the global minimized energy states of the samples. The residual internal stress is employed to signify the difference between the simulated and the experimentally synthesized samples for the first time. The structure of grain boundaries, the descending process and the local distribution of the average internal stress and the energy of the samples, as well as the elastic constants of the final samples are observed during these two relaxation procedures. It is found that the energy and the residual internal stress of the samples are close to the experimental data after relaxation. It is enough to obtain the global minimum energy states through Voronoi geometrical construction to investigate the static and dynamic mechanical properties of NC metals with a 5—10 ps local energy minimization and a 40—100 ps of simulated annealing with annealing temperature between the room temperature and 65% of melting point. The annealing time and temperature are of little importantce to the mechanical properties within the parameter windows properly selected.
    • 基金项目: 冲击波物理与爆轰物理国防科技重点实验室基金(批准号:9140C6703010804, 9140C6701010902)和中国工程物理研究院科学技术发展基金(批准号:2007A01004)资助的课题.
    [1]

    Weertman J R 2002 Nanostructured Materials: Processing, Properties, and Potential Applications (New York: William Andrew Publishing) p397

    [2]

    Wang H T, Yang W 2004 Adv. Mech. 34 13(in Chinese) [王宏涛、杨 卫 2004 力学进展 34 13]

    [3]

    Jiang B, Weng G J 2004 J. Mech. Phys. Solids 52 1125

    [4]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497(in Chinese) [张 林、 王绍青、 叶恒强 2004 53 2497]

    [5]

    van Swygenhoven H, Derlet P M 2008 Dislocations in Solids (Amsterdam: Elsevier) p1

    [6]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [7]

    Kadau K, Germann T C, Lomdahl P S, Holian B L, Kadau D, Entel P, Kreth M, Westerhoff F, Wolf D E 2004 Metall. Mater. Trans. A 35 2719

    [8]

    Keblinski P, Wolf D, Phillpot S R, Gleiter H 1999 Scripta Mater. 41 631

    [9]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [10]

    van Swygenhoven H, Caro A 1997 Nanostruct. Mater. 9 669

    [11]

    Schitz J, Vegge T, di Tolla F D, Jacobsen K W 1999 Phys. Rev. B 60 11971

    [12]

    Dalla Torre F, van Swygenhoven H, Victoria M 2002 Acta Mater. 50 3957

    [13]

    Frseth A G, Derlet P M, van Swygenhoven H 2006 Scripta Mater. 54 477

    [14]

    van Swygenhoven H, Derlet P M 2001 Phys. Rev. B 64 224105

    [15]

    Yamakov V, Wolf D, Phillpot S R, Gleiter H 2002 Acta Mater. 50 5005

    [16]

    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838

    [17]

    Xu Z, Wang X X, Liang H Y, Wu H A 2004 Acta Phys. Sin. 53 3637(in Chinese) [徐 洲、王秀喜、 梁海弋、 吴恒安 2004 53 3637]

    [18]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [19]

    Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545(in Chinese) [崔新林、 祝文军、 邓小良、 李英骏、 贺红亮 2006 55 5545]

    [20]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767(in Chinese) [邓小良、 祝文军、 贺红亮、 伍登学、 经福谦 2006 55 4767]

    [21]

    Parrinello M, Rahman A 1980 J. Appl. Phys. 52 7182

    [22]

    Hoover W G 1989 Phys. Rev. A 40 2814

    [23]

    Nose S, Yonezawa F 1986 J. Chem. Phys. 84 1803

    [24]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [25]

    Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535

    [26]

    Zhu W J, Song Z F, Deng X L, He H L, Cheng X Y 2007 Phys. Rev. B 75 024104

    [27]

    Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703(in Chinese) [王海燕、 祝文军、 宋振飞、 刘绍军、 陈向荣、 贺红亮 2008 57 3703]

    [28]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [29]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [30]

    Bulatov V V, Cai W 2006 Computer Simulations of Dislocations (Oxford: Oxford University Press) p42

    [31]

    Wu X L, Zhu Y T, Ma E 2006 Appl. Phys. Lett. 88 121905

    [32]

    Liu X M 2003 Micro- and Meso-Scale Structure and Mechanical Properties of Engineering Materials (Hefei: University of Science and Technology of China Press) p112 (in Chinese) [刘孝敏 2003工程材料的微细观结构和力学性能 (合肥: 中国科学技术大学出版社) 第112页]

  • [1]

    Weertman J R 2002 Nanostructured Materials: Processing, Properties, and Potential Applications (New York: William Andrew Publishing) p397

    [2]

    Wang H T, Yang W 2004 Adv. Mech. 34 13(in Chinese) [王宏涛、杨 卫 2004 力学进展 34 13]

    [3]

    Jiang B, Weng G J 2004 J. Mech. Phys. Solids 52 1125

    [4]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497(in Chinese) [张 林、 王绍青、 叶恒强 2004 53 2497]

    [5]

    van Swygenhoven H, Derlet P M 2008 Dislocations in Solids (Amsterdam: Elsevier) p1

    [6]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [7]

    Kadau K, Germann T C, Lomdahl P S, Holian B L, Kadau D, Entel P, Kreth M, Westerhoff F, Wolf D E 2004 Metall. Mater. Trans. A 35 2719

    [8]

    Keblinski P, Wolf D, Phillpot S R, Gleiter H 1999 Scripta Mater. 41 631

    [9]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [10]

    van Swygenhoven H, Caro A 1997 Nanostruct. Mater. 9 669

    [11]

    Schitz J, Vegge T, di Tolla F D, Jacobsen K W 1999 Phys. Rev. B 60 11971

    [12]

    Dalla Torre F, van Swygenhoven H, Victoria M 2002 Acta Mater. 50 3957

    [13]

    Frseth A G, Derlet P M, van Swygenhoven H 2006 Scripta Mater. 54 477

    [14]

    van Swygenhoven H, Derlet P M 2001 Phys. Rev. B 64 224105

    [15]

    Yamakov V, Wolf D, Phillpot S R, Gleiter H 2002 Acta Mater. 50 5005

    [16]

    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838

    [17]

    Xu Z, Wang X X, Liang H Y, Wu H A 2004 Acta Phys. Sin. 53 3637(in Chinese) [徐 洲、王秀喜、 梁海弋、 吴恒安 2004 53 3637]

    [18]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [19]

    Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545(in Chinese) [崔新林、 祝文军、 邓小良、 李英骏、 贺红亮 2006 55 5545]

    [20]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767(in Chinese) [邓小良、 祝文军、 贺红亮、 伍登学、 经福谦 2006 55 4767]

    [21]

    Parrinello M, Rahman A 1980 J. Appl. Phys. 52 7182

    [22]

    Hoover W G 1989 Phys. Rev. A 40 2814

    [23]

    Nose S, Yonezawa F 1986 J. Chem. Phys. 84 1803

    [24]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [25]

    Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535

    [26]

    Zhu W J, Song Z F, Deng X L, He H L, Cheng X Y 2007 Phys. Rev. B 75 024104

    [27]

    Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703(in Chinese) [王海燕、 祝文军、 宋振飞、 刘绍军、 陈向荣、 贺红亮 2008 57 3703]

    [28]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [29]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [30]

    Bulatov V V, Cai W 2006 Computer Simulations of Dislocations (Oxford: Oxford University Press) p42

    [31]

    Wu X L, Zhu Y T, Ma E 2006 Appl. Phys. Lett. 88 121905

    [32]

    Liu X M 2003 Micro- and Meso-Scale Structure and Mechanical Properties of Engineering Materials (Hefei: University of Science and Technology of China Press) p112 (in Chinese) [刘孝敏 2003工程材料的微细观结构和力学性能 (合肥: 中国科学技术大学出版社) 第112页]

  • [1] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究.  , 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [2] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [3] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨.  , 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [4] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究.  , 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [5] 刘海, 李启楷, 何远航. CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟.  , 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [6] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究.  , 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [7] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移.  , 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [8] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究.  , 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [9] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟.  , 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [10] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟.  , 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [11] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱.  , 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [12] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究.  , 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [13] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [14] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究.  , 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [15] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [16] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响.  , 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [17] 杨全文, 朱如曾, 文玉华. 纳米铜团簇在常温和升温过程中能量特征的分子动力学研究.  , 2005, 54(1): 89-95. doi: 10.7498/aps.54.89
    [18] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟.  , 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [19] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [20] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
计量
  • 文章访问数:  9280
  • PDF下载量:  2728
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-20
  • 修回日期:  2009-11-11
  • 刊出日期:  2010-07-15

/

返回文章
返回
Baidu
map