搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位自生20vol.%TiCP/LD7Al基复合材料蠕变的应力指数和门槛应力

嵇峰 宋爱君 张卫国 郝秋红 白邦伟 刘日平 马明臻

引用本文:
Citation:

原位自生20vol.%TiCP/LD7Al基复合材料蠕变的应力指数和门槛应力

嵇峰, 宋爱君, 张卫国, 郝秋红, 白邦伟, 刘日平, 马明臻

Stress exponent and threshold stress of in situ TiCp/LD7Al matrix composite in creep

Ji Feng, Song Ai-Jun, Zhang Wei-Guo, Hao Qiu-Hong, Bai Bang-Wei, Liu Ri-Ping, Ma Ming-Zhen
PDF
导出引用
  • 在523 K,573 K和623 K恒应力压缩条件下研究了原位自生20vol%TiCp/LD7Al基复合材料和LD7Al合金的高温蠕变行为.对蠕变速率与外加应力在双对数坐标中进行拟合,获得了复合材料和基体铝合金的应力指数;通过在幂率方程中引入有效应力(σ-σ0),对实验数据进行线性回归外推至零蠕变速率得到相应的门槛应力.实验结果显示,复合材料的应力指数和门槛应力均高于LD7Al合金.TiC颗粒的存在,明显改善了LD7Al合金的高温蠕变
    The elevated temperature creep behavior of in situ 20vol%TiCP/LD7Al matrix composite and LD7Al alloy was investigated under the condition of constant compressive stress at 523 K,573 K and 623 K,respectively. The stress exponents of the composite material and the matrix aluminium alloy were obtained by fitting the creep rate and the applied stress in log-log plot,respectively. By introducing an effective stress (σ-σ0) to the power equation and extroplating the linearly-regressed experemental data to zero creep rate,the threshold stresses were obtained. The results showed that both the stress exponents and the threshold stresses of the composite were higher than those of LD7Al,indicating that the presence of TiC particles significantly improved the elevated temperature creep property of LD7Al. By introducing a threshold stress,the high-temperature creep behavior of the composite can be explained by the cooperative effect of the dislocation-climbing and the particle hindrance to the matrix deformation.
    • 基金项目: 国家重点基础研究发展计划(973)项目(批准号:2006CB605201-2),河北省自然科学基金(批准号:E2009000449)资助的课题.
    [1]

    [1]Xiao B L,Ma Z Y,Bi J 2002 Acta Metall. Sin. 38 994 (in Chinese)[肖伯律、马宗义、毕敬 2002 金属学报 38 994]

    [2]

    [2]Huang M H,Wang H W,Li X F,Ma N H 2005 Acta Mater Compos. Sin. 22 36 (in Chinese)[黄明华、王浩伟、李险峰、马乃恒 2005 复合材料学报 22 36]

    [3]

    [3]Ma Z Y,Tjong S C 1999 Mater. Sci. Eng. A 278 5

    [4]

    [4]Li Y,Langdon T G 1997 Scripta Mater. 36 1457

    [5]

    [5]Li Y,Langdon T G 1998 Acta Mater. 46 1143

    [6]

    [6]Pandey A B,Mishra R S,Mahajan Y R 1992 Acta Metall Mater. 40 2045

    [7]

    [7]Park K T,Mohamed F A 1995 Metall. Meter. Trans. A 26 3119

    [8]

    [8]Xu F M,Wu Lawrence C M,Han G W,Tan Y 2007 Chin. J. Aeronaut. 20 115

    [9]

    [9]ACˇUadek J,Pahutov M,1ustek V 2000 Mater. Sci. Eng. A 281 162

    [10]

    ]ACˇUadek J,Kucha Arˇo v'K,Zhu S J 1998 Mater. Sci. Eng. A 246 252

    [11]

    ]Deshmukh S P,Mishra R S,Kendig K L 2005 Mater. Sci. Eng. A 410-411 53

    [12]

    ]Ji F,Ma M Z,Song A.J,Zhang W G,Zong H T,Liang S X,Osamu Y,Liu R P 2009 Mater. Sci. Eng. A 506 58

    [13]

    ]Zhang W G,Song A J,Liu R P,Ma M Z 2008 Mater. Sci. Eng. A 474 225

    [14]

    ]Ricardo F,Gaspar G D 2009 J. Alloys Compd. 478 133

    [15]

    ]Ricardo F,Gaspar G D 2008 Scripta Mater. 59 1135

    [16]

    ]Olbricht J,Yawny A,Young M L,Eggeler G 2009 Mater. Sci. Eng. A 510-511 407

    [17]

    ]Zong B Y,Derby B 1997 Acta Mater. 45 41

    [18]

    ]ACˇUadek J,Oikawa H,ustek V 1995 Mater. Sci. Eng. A 190 9

    [19]

    ]Mohamed F A 1998 Mater. Sci. Eng. A 245 242

    [20]

    ]Zhu S M,Tjong S C,Lai J K L 1998 Acta Mater. 46 2969

    [21]

    ]Shi N,Wilner B,Arsenault R J 1992 Acta Metall. Mater. 40 2841

    [22]

    ]Mohamed F A,Langdon T G 1974 Acta Metall. 22 779

    [23]

    ]Sherby O D,Klundt R H,Miller A K 1977 Metall. Trans A 8 843

    [24]

    ]Ricardo F,Gaspar G D 2008 Acta Mater. 56 2549

    [25]

    ]Ricardo F,Gaspar G D 2009 J. Alloys Compd. 475 202

    [26]

    ]Anastasia H. Muliana,Jeong Sik Kim 2007 Int. J. Solids Struct. 44 6891

    [27]

    ]Peng J,Long Z L,Wei H Q,Li X A,Zhang Z C 2009 Acta Phys. Sin. 58 4059 (in Chinese)[彭建、龙志林、危洪清、李乡安、张志纯 2009 58 4059]

    [28]

    ]Nieh T G 1984 Metall. Trans. A 15 139

    [29]

    ]Krajewski P E,Allison J E,Jones J W 1993 Metall. Trans. A 24 2731

    [30]

    ]Krajewski P E,Jones J W,Allison J E 1995 Metall. Mater. Trans. A 26 3107

    [31]

    ]Jin H M,Felix A,Aroyave M 2006 Acta Phys. Sin. 55 6157 (in Chinese)[靳惠明、Felix A、Aroyave M 2006 55 6157

    [32]

    ]Dlouhy A,Merk N,Eggeler G 1993 Acta Metall. Mater. 41 3245[33]Dlouhy A,Eggeler G,Merk N 1995 Acta Metall. Mater. 43 535

    [33]

    ]Nikhilesh C,Krishan K C 2006 Metal Matrix Composites (Springer,Printed in the United States of America) p320

    [34]

    ]Wu Z Y,Yang Y T,Chai C C,Li Y J,Wang J Y,Liu J 2009 Acta Phys. Sin. 58 2625 (in Chinese)[吴振宇、杨银堂、柴常春、李跃进、汪家友、刘静 2009 58 2625]

  • [1]

    [1]Xiao B L,Ma Z Y,Bi J 2002 Acta Metall. Sin. 38 994 (in Chinese)[肖伯律、马宗义、毕敬 2002 金属学报 38 994]

    [2]

    [2]Huang M H,Wang H W,Li X F,Ma N H 2005 Acta Mater Compos. Sin. 22 36 (in Chinese)[黄明华、王浩伟、李险峰、马乃恒 2005 复合材料学报 22 36]

    [3]

    [3]Ma Z Y,Tjong S C 1999 Mater. Sci. Eng. A 278 5

    [4]

    [4]Li Y,Langdon T G 1997 Scripta Mater. 36 1457

    [5]

    [5]Li Y,Langdon T G 1998 Acta Mater. 46 1143

    [6]

    [6]Pandey A B,Mishra R S,Mahajan Y R 1992 Acta Metall Mater. 40 2045

    [7]

    [7]Park K T,Mohamed F A 1995 Metall. Meter. Trans. A 26 3119

    [8]

    [8]Xu F M,Wu Lawrence C M,Han G W,Tan Y 2007 Chin. J. Aeronaut. 20 115

    [9]

    [9]ACˇUadek J,Pahutov M,1ustek V 2000 Mater. Sci. Eng. A 281 162

    [10]

    ]ACˇUadek J,Kucha Arˇo v'K,Zhu S J 1998 Mater. Sci. Eng. A 246 252

    [11]

    ]Deshmukh S P,Mishra R S,Kendig K L 2005 Mater. Sci. Eng. A 410-411 53

    [12]

    ]Ji F,Ma M Z,Song A.J,Zhang W G,Zong H T,Liang S X,Osamu Y,Liu R P 2009 Mater. Sci. Eng. A 506 58

    [13]

    ]Zhang W G,Song A J,Liu R P,Ma M Z 2008 Mater. Sci. Eng. A 474 225

    [14]

    ]Ricardo F,Gaspar G D 2009 J. Alloys Compd. 478 133

    [15]

    ]Ricardo F,Gaspar G D 2008 Scripta Mater. 59 1135

    [16]

    ]Olbricht J,Yawny A,Young M L,Eggeler G 2009 Mater. Sci. Eng. A 510-511 407

    [17]

    ]Zong B Y,Derby B 1997 Acta Mater. 45 41

    [18]

    ]ACˇUadek J,Oikawa H,ustek V 1995 Mater. Sci. Eng. A 190 9

    [19]

    ]Mohamed F A 1998 Mater. Sci. Eng. A 245 242

    [20]

    ]Zhu S M,Tjong S C,Lai J K L 1998 Acta Mater. 46 2969

    [21]

    ]Shi N,Wilner B,Arsenault R J 1992 Acta Metall. Mater. 40 2841

    [22]

    ]Mohamed F A,Langdon T G 1974 Acta Metall. 22 779

    [23]

    ]Sherby O D,Klundt R H,Miller A K 1977 Metall. Trans A 8 843

    [24]

    ]Ricardo F,Gaspar G D 2008 Acta Mater. 56 2549

    [25]

    ]Ricardo F,Gaspar G D 2009 J. Alloys Compd. 475 202

    [26]

    ]Anastasia H. Muliana,Jeong Sik Kim 2007 Int. J. Solids Struct. 44 6891

    [27]

    ]Peng J,Long Z L,Wei H Q,Li X A,Zhang Z C 2009 Acta Phys. Sin. 58 4059 (in Chinese)[彭建、龙志林、危洪清、李乡安、张志纯 2009 58 4059]

    [28]

    ]Nieh T G 1984 Metall. Trans. A 15 139

    [29]

    ]Krajewski P E,Allison J E,Jones J W 1993 Metall. Trans. A 24 2731

    [30]

    ]Krajewski P E,Jones J W,Allison J E 1995 Metall. Mater. Trans. A 26 3107

    [31]

    ]Jin H M,Felix A,Aroyave M 2006 Acta Phys. Sin. 55 6157 (in Chinese)[靳惠明、Felix A、Aroyave M 2006 55 6157

    [32]

    ]Dlouhy A,Merk N,Eggeler G 1993 Acta Metall. Mater. 41 3245[33]Dlouhy A,Eggeler G,Merk N 1995 Acta Metall. Mater. 43 535

    [33]

    ]Nikhilesh C,Krishan K C 2006 Metal Matrix Composites (Springer,Printed in the United States of America) p320

    [34]

    ]Wu Z Y,Yang Y T,Chai C C,Li Y J,Wang J Y,Liu J 2009 Acta Phys. Sin. 58 2625 (in Chinese)[吴振宇、杨银堂、柴常春、李跃进、汪家友、刘静 2009 58 2625]

  • [1] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛.  , 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [3] 李玲, 潘天择, 马家骏, 张善涛, 汪尧进. PNZST:AlN复合陶瓷局域应力场增强热释电性能机理.  , 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [4] 段亚娟, 乔吉超. Pd基非晶合金动态弛豫机制和应力松弛行为.  , 2022, 71(8): 086101. doi: 10.7498/aps.71.20212025
    [5] 张建强, 秦彦军, 方峥, 范晓珍, 杨慧雅, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟. Fe基合金应力感生不可逆磁各向异性机理.  , 2022, 71(24): 247501. doi: 10.7498/aps.71.20221509
    [6] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究.  , 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [7] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究.  , 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [8] 蒋钊, 陈学康. 界面合金化控制柔性Al/PI薄膜应力的研究.  , 2015, 64(21): 216802. doi: 10.7498/aps.64.216802
    [9] 魏智, 金光勇, 彭博, 张喜和, 谭勇. 毫秒脉冲激光辐照硅基PIN的温度场应力场数值分析.  , 2014, 63(19): 194205. doi: 10.7498/aps.63.194205
    [10] 张朝阳, 李中洋, 秦昌亮, 印洁, 张长桃, 毛卫平, 冯钦玉. 脉冲激光与电化学复合的应力刻蚀加工质量研究.  , 2013, 62(9): 094210. doi: 10.7498/aps.62.094210
    [11] 孙光爱, 陈波, 吴二冬, 闫冠云, 黄朝强, 李武会, 吴忠华, 柳义, 王劼. 蠕变镍基单晶高温合金微观结构与界面特征的X射线小角散射研究.  , 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [12] 蒋中伟, 王文新, 高汉超, 李辉, 何涛, 杨成良, 陈弘, 周均铭. GaSb/GaAs复合应力缓冲层上自组装InAs量子点的生长.  , 2009, 58(1): 471-476. doi: 10.7498/aps.58.471
    [13] 彭建, 龙志林, 危洪清, 李乡安, 张志纯. 铁基块体非晶合金在纳米压痕过程中的蠕变行为研究.  , 2009, 58(6): 4059-4065. doi: 10.7498/aps.58.4059
    [14] 张建民, 徐可为. 纳米压痕法测量Cu的室温蠕变速率敏感指数.  , 2004, 53(8): 2439-2443. doi: 10.7498/aps.53.2439
    [15] 张武, 王燕. 光学非均匀单向纤维复合材料的应力光学行为.  , 1994, 43(7): 1192-1202. doi: 10.7498/aps.43.1192
    [16] 李勇, 孔庆平. 扩展位错攀移的高温蠕变机制.  , 1989, 38(1): 91-97. doi: 10.7498/aps.38.91
    [17] 孔庆平, 戴勇. 用内耗方法研究铜的蠕变断裂过程.  , 1987, 36(7): 855-861. doi: 10.7498/aps.36.855
    [18] 陈篪, 邓枝生, 吴伯群, 丁树深. γ′晶体的蠕变及持久性能.  , 1974, 23(1): 69-76. doi: 10.7498/aps.23.69
    [19] 钱临照;刘民治. 关於锡单晶体的微蠕变.  , 1956, 12(3): 275-279. doi: 10.7498/aps.12.275
    [20] 葛庭燧, 孔庆平. 多晶纯铁的高温蠕变及加碳的影响.  , 1954, 10(4): 365-382. doi: 10.7498/aps.10.365
计量
  • 文章访问数:  9120
  • PDF下载量:  996
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-05
  • 修回日期:  2009-07-11
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map