搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴预应变对C掺杂Fe(110)表面H吸附、扩散的影响

蔡一全 尹益辉 李继承

引用本文:
Citation:

单轴预应变对C掺杂Fe(110)表面H吸附、扩散的影响

蔡一全, 尹益辉, 李继承

The effect of uniaxial pre-strain on H adsorption and diffusion on C-doped Fe (110) surface

Cai Yi-Quan, Yin Yi-Hui, Li Ji-Cheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为了从微观结构层次进一步深入研究和完善预应变/预应力与H吸附钢(Fe-C合金)表面的作用机制,采用第一性原理的方法计算了单轴预应变对C掺杂Fe(110)表面的H吸附、扩散的影响,从表面原子空间构型、结合能(Eb)、电子结构三个方面探究了预应变对H吸附、渗透的影响,并计算了掺杂和未掺杂C原子时H渗透的扩散能垒。结果表明,掺杂的C原子使Fe晶体的八面体空间在不同方向上发生畸变,从而使Fe(110)表面产生了“畸变”,不同位点处畸变程度(D)和离C原子本身的距离不一致,导致各位点在预应变下的吸附结构(H吸附高度d和单元表面积S)与结合能(Eb)变化趋势不一致,扩散能垒变化趋势与结合能变化趋势相反。研究发现,H吸附在C掺杂位点时,吸附结构和结合能计算结果显示H有更容易扩散到内部中的趋势,而电子结构计算结果显示C原子与H原子相斥,扩散能垒相较于未掺杂时升高,H原子难以扩散进入体相内部而在C周围富集,继而诱发氢脆。吸附结构、结合能、扩散能垒计算结果显示:在掺杂位点(TFS位点)处,随着拉伸应变增大,H原子越容易扩散到钢的微观结构中,随着压缩应变增大,H原子越难扩散到钢的微观结构中,可利用压缩应变减小钢中氢脆的发生。这从微观层面解释了实际工程应用中“同等应力情况下,C越多,钢铁发生氢脆的倾向越严重”的原因,从电子结构层次完善了预应变下H吸附钢(Fe-C合金)表面的作用机制,可对氢脆的研究提供参考。
    To further investigate and refine the mechanism of pre-strain/pre-stress interaction with hydrogen adsorption on steel (Fe-C alloy) surfaces at the microstructural level, first-principles calculations were employed to study the effects of uniaxial pre-strain on hydrogen adsorption and diffusion at C-doped Fe(110) surfaces. The influence of pre-strain on hydrogen adsorption and permeation was explored through three aspects: atomic spatial configuration, binding energy (Eb), and electronic structure, while diffusion energy barriers for hydrogen permeation were calculated with and without C atom doping. Results demonstrate that doped C atoms induce octahedral lattice distortion in Fe crystals across different directions, creating "distortion" on the Fe(110) surface. Variations in distortion degree (DΔ) at different sites and their distances from C atom lead to inconsistent trends in adsorption configurations (H adsorption height d and unit surface area SΔ) and binding energy (Eb) under pre-strain. For adsorption configurations, d is coupled by ε and C atom effects: at the TFpure site (non-C-doped site ), d decreases as SΔ increases; under compression(ε decreases from 0% to -5%) at TF (C-doped site with C atom directly beneath the site), TFs (C-doped site located closer to the maximally distorted atom Fe135) and TFL sites (C-doped site located farther from the maximally distorted atom Fe135), d positively correlates with DΔ, while under tension (ε increases from 0% to 5%), d negatively correlates with SΔ. For Eb, as ε increases from -5% to 5%, Eb at TFpure peaks then declines, whereas Eb at TF decreases initially before rising, and Eb at TFS/TFL monotonically increases. Analysis reveals that Eb at TFS/TFL positively correlates with the standard deviation (Sα) of the three internal angles in the triangular unit. The diffusion energy barrier (E) trends inversely with Eb. When H adsorbs at C-doped sites, adsorption configuration and binding energy calculations suggest H tends to diffuse inward more readily. However, electronic structure analysis reveals repulsion between C and H atoms, accompanied by increased diffusion barriers compared to undoped cases, causing H atoms to accumulate around C atoms rather than penetrating the bulk phase, thereby inducing hydrogen embrittlement. Adsorption configuration, binding energy, and diffusion barrier calculations indicate that at doped sites (TFS site), increasing tensile strain facilitates H diffusion into the steel microstructure, whereas compressive strain hinders it. This explains the engineering phenomenon where "higher carbon content exacerbates hydrogen embrittlement tendency under equivalent stress" at the atomic scale. The study elucidates the mechanism of H adsorption on pre-strained Fe-C alloy surfaces from an electronic structure perspective, providing theoretical insights for hydrogen embrittlement research.
  • [1]

    Teng Y, Wang Z D, Li Y, Ma Q, Hui Q, Li S B 2019Csee J. Power Energy 5 266

    [2]

    Zhang B, Wan H, Xu K Z, Li X J, Wei S X 2017Int. Pet. Econ. 25 65(in Chinese)[张博,万宏,徐可忠,李雪静,魏寿祥2017国际石油经济25 65]

    [3]

    Dodds P E, Mcdowall W 2013Energy Policy 60 305

    [4]

    Buzzard R W, Cleaves H E 1951Hydrogen Embrittlement of Steel-Review of Literature(United States:National Bureau of Standards) p36

    [5]

    Liu S, Wang M G 2015Trans. Nonferrous Met. Soc. China 25 3100(in Chinese)[刘松,王寅岗2015中国有色金属学25 3100]

    [6]

    Hu S W, Liang H, Xu B 2019Acta Aeronaut. Astronaut. Sin. 40278(in Chinese)[胡世威,梁浩,徐兵2019航空学报 40278]

    [7]

    Cheng A K,Chen N Z 2017Int. J. Fatigue 96152

    [8]

    Cheng A K,Chen N Z 2017Ocean Eng. 142 10

    [9]

    Meda U S, Bhat N, Pandey A, Subramanya K N, Lourdu Antony Raj M A 2023Int. J. Hydrogen Energ. 4817894

    [10]

    Nanninga N, Grochowsi J, Heldt L, Rundman K 2009Corros. Sci. 52 1237

    [11]

    Nanninga N E, Levy YS, Drexler ES, Condon RT, Stevenson A E, Slifka A J 2012Corros. Sci. 59 1

    [12]

    Zhou C S, Ye B G, Song Y Y, Cui T C, Xu P, Zhang L 2019Int. J. Hydrogen Energ. 44 22547

    [13]

    Toofan J, Watson P R 1998Surf. Sci. 401 162

    [14]

    Russell B C, Castell M R. 2008Phys. Rev. B 77 245414

    [15]

    Lord M A, Evans E J, Barnett J C, Allen W M, Barron R A, Wilks P S 2017J. Phys. Condens. Mat. 29 384001

    [16]

    Li S Y, Hu R S, Zhao W M, Li B B, Wang Y 2020Surf. Technol. 49 15(in Chinese)[李守英,胡瑞松,赵卫民,李贝贝王勇2020表面技术49 15]

    [17]

    Hu T H, Li Z H, Zhang Q F 2024Acta Phys. Sin. 73 067101(in Chinese)[胡庭赫,李直昊,张千帆,2024 73 067101]

    [18]

    Zhao W, Wang J D, Liu F B, Chen D R 2009Acta phys. Sin. 58 3352(in Chinese)[赵巍,汪家道,刘峰斌,陈大融2009 58 3352]

    [19]

    Yoshida K 1980Jpn. J. Appl. Phys. 19 1873

    [20]

    Tang X Y 2016Master Dissertation (Qingdao:China University of Petroleum (East China))(in Chinese)[唐秀艳2016硕士学位论文青岛:中国石油大学(华东)]

    [21]

    Savoie J, Ray R K, Butron-Guillen M P, Jonas J J 1994Acta Metall. Mater. 42 2511

    [22]

    Cremaschi P, Yang H, Whitten J L 1995Surf. Sci. 330 255

    [23]

    Bozso F, Ertl G, Grunze M, Weiss M 1977Appl. of Surf. Sci. 1 103

    [24]

    Baró A M, Erley W 1981Surf. Sci. 112 L759

    [25]

    Xie W W, Peng L, Peng D L, Gu F L, Liu J 2014Appl. Surf. Sci 29647

    [26]

    Eder M, Terakura K, Hafner J 2001 Phys. Rev. B 2001, 64115426-115

    [27]

    Raeker J T, DePristo E A 1990 Surf. Sci. 1990235 84

    [28]

    Chohan K U, Jimenez M E, Koehler P K S 2016Appl. of Surf. Sci. 387 385

    [29]

    Xu L, Kirvassilis D, Bai Y, Mavrikakis M 2018Surf. Sci. 667 54

    [30]

    Richard T, Zihan X, Balachandran R, Donald W, Wenhao S, Kristin A P, Ping O S 2016Sci. Data 3 160080

    [31]

    Sheikhzadeh A, Liu J, Zeng Y M, Zhang H 2024Int. J. Hydrogen Energ. 81 727

    [32]

    Li S Y, Zhao W M, Qiao J H, Wang Y 2019Acta Phys. Sin. 68 217103(in Chinese)[李守英,赵卫民,乔建华,王勇2019 68 217103]

    [33]

    Li S Y, Zhao W M, Wang Y, 2020Chinese J. Struc. Chem. 39 443

    [34]

    Kresse G, Joubert D 1999Phys. Rev. B 591758

    [35]

    Kresse G, Hafner J. 1993Phys. Rev. B 47 558

    [36]

    Blochl P E 1994Phys. Rev. B 50 17953

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865

    [38]

    Liu X W, Huo C F, Li Y W, Wang J G, Jiao H J 2012Surf. Sci. 606 733

    [39]

    Jiang D E, Carter A E 2005Phys. Rev. B 71 045402.1

    [40]

    Dong N, Zhang C, Liu H, Li J, Wu X L 2014Comp. Mater. Sci. 90137

    [41]

    Stibor A, Kresse G, Eichler A, Hafner J 2002Surf. Sci. 507 99

    [42]

    Spencer J S M, Hung A, Snook K I, Yarovsky I 2002. Surf. Sci. 515 L464

    [43]

    Arya A, Carter A E 2003J. Chem. Phys. 118 8982

    [44]

    Shih H D, Jona F, Bardi U, Marcus P M 1980J. Phys. C:Solid State Phys. 13 3801

    [45]

    Xu C, O'Connor D J 1991Nucl. Instrum. Meth. B 53 315

    [46]

    Chohan K U, Jimenez-Melero E, Koehler P K S 2016Appl. Surf. Sci. 387 385

    [47]

    Liu X W, Huo C F, Li Y W, Wang J G, Jiao H J 2012Surf. Sci. 606 733

    [48]

    Shen X J, Chen J,Sun Y M, Liang T S 2016Surf. Sci. 654 48

    [49]

    Jiang D E, Carter A E 2003 Surf. Sci. 547 85

    [50]

    Yang Y, He Q F 2021Acta Metall. Sin. 57 385(in Chinese)[杨勇,赫全锋2021金属学报, 57 385]

    [51]

    Li X J, Lin S Y, Zhou W Z, Ma Y, Jiang N B, Liu Z 2024Int. J. Hydrogen Energ. 51 894

    [52]

    He Y, Li Y J, Chen C F, Yu H B 2017Int. J. Hydrogen Energ. 4227438

    [53]

    Henkelman G, Uberuaga P B, Jónsson H 2000J. Chem. Phys. 113 9901

    [54]

    Jiang D E, Carter A E 2004Phys. Rev. B 70 064102.

    [55]

    Zhu L X, Luo J H, Zheng S L, Yang S J, Hu J, Chen Z 2023 Int. J. Hydrogen Energ. 48 17703

    [56]

    Liu F, Wen Z P 2019Acta Phys. Sin. 68 137101(in Chinese)[刘飞,文志鹏2019 68 137101]

    [57]

    Zhang F C, Li CF, Wen P, Luo Q, Ran Z L 2014Acta Phys. Sin. 63 227101(in Chinese)[张凤春,李春福,文平,罗强,冉曾令2014 63 227101]

    [58]

    Wang C M, Zhang L J, Ma Y J, Zhang S Z, Yang R, Hu Q M 2023Appl. Surf. Sci. 621 156871

    [59]

    Zhang J L, Wang Z M, Wang D H, Hu C H, Wang F, Gan W J, Lin Z K 2023Acta Phys. Sin. 72 168801(in Chinese)[张江林,王仲民,王殿辉,胡朝浩,王凤,甘伟江,林振琨2023 72 168801]

  • [1] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究.  , doi: 10.7498/aps.72.20230132
    [2] 李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛. 氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究.  , doi: 10.7498/aps.71.20220631
    [3] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , doi: 10.7498/aps.69.20201231
    [4] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究.  , doi: 10.7498/aps.67.20172720
    [5] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究.  , doi: 10.7498/aps.66.216801
    [6] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究.  , doi: 10.7498/aps.66.086801
    [7] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算.  , doi: 10.7498/aps.66.057301
    [8] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究.  , doi: 10.7498/aps.65.236802
    [9] 熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究.  , doi: 10.7498/aps.65.248101
    [10] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , doi: 10.7498/aps.64.013101
    [11] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究.  , doi: 10.7498/aps.64.116301
    [12] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究.  , doi: 10.7498/aps.62.206102
    [13] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , doi: 10.7498/aps.62.167502
    [14] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , doi: 10.7498/aps.62.077101
    [15] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , doi: 10.7498/aps.61.047101
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , doi: 10.7498/aps.61.227102
    [17] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究.  , doi: 10.7498/aps.60.086801
    [18] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究.  , doi: 10.7498/aps.59.4170
    [19] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算.  , doi: 10.7498/aps.59.4303
    [20] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究.  , doi: 10.7498/aps.58.3352
计量
  • 文章访问数:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回
Baidu
map