搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z=118~120超重核α衰变性质的研究

邢凤竹 乐先凯 王楠 王艳召

引用本文:
Citation:

Z=118~120超重核α衰变性质的研究

邢凤竹, 乐先凯, 王楠, 王艳召

Study on α decay properties of superheavy nuclei with Z=118~120

Xing Feng-Zhu, Le Xian-Kai, Wang Nan, Wang Yan-Zhao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文通过考虑原子核的形变效应和引入α粒子预形成因子的解析表达式对统一裂变模型(unified fission model,UFM)进行了改进。将考虑原子核形变效应后的UFM称为IMUFM1,在IMUFM1基础上进一步引入α粒子预形成因子的解析表达式的版本称为IMUFM2。利用UFM,IMUFM1和IMUFM2三个版本分别对Z≥92重核和超重核的α衰变半衰期进行了系统地计算。通过计算理论值和实验值之间的平均偏差和标准偏差,发现考虑形变效应后模型的精度比原来有了略微的提高。而引入α粒子预形成因子的解析表达式后,模型的精度进一步提高了32.09%。接着,通过有限历程小液滴模型(FRDM2012),Weizsäcker-Skyrme-4(WS4)质量模型和Koura等人提出的核质量公式(Koura-Tachibana-Uno-Yamada,KTUY)分别提取了Z=118~120同位素链的α衰变能,并利用IMUFM1和IMUFM2计算了这三条同位素链的α衰变半衰期。通过观察半衰期随同位素链的演化,发现不同质量模型预言的演化趋势是一致的,在N=178和184处会出现转折点,但不同的质量模型预言的α衰变半衰期会出现数量级的差异。另外,通过讨论α衰变和自发裂变之间的竞争,发现N<186质量核区的超重核以α衰变为主。因此,理论研究超重核的α衰变半衰期是有意义的。最后,利用IMUFM1和IMUFM2和上述的三种质量模型讨论了296Og,297119和298120 α衰变链的衰变模式,发现WS4和KTUY两种质量模型的预言结果与实验测量一致。尽管FRDM2012质量模型预言的288Fl,285Nh和286Fl与实验测量有所差别,但对于288Fl,IMUFM2的预言结果比INUFM1更符合实验测量,再次验证了IMUFM2的合理性和可靠性。希望本文的理论研究有助于为将来实验上鉴别新核素提供理论参考。
    An unified fission model (UFM) has been improved by considering the nuclear deformation effect and introducing an analytical expression of the preformation factor. The improved version of the UFM by considering the nuclear deformation effect is called IMUFM1. Based on the IMUFM1, the further improved version is called IMUFM2 by introducing an analytical expression of the preformation factor. Within the UFM, the IMUFM1 and the IMUFM2, the α decay half-lives of heavy and superheavy nuclei with Z≥92 are systematically calculated. By calculating the standard deviation between the calculated ones and the experimental data, it is found that the accuracy of the IMUFM1 improved 2.45% than this of the UFM. The accuracy of the IMUFM2 will be further improved 32.09% than this of the IMUFM1, which implies the nuclear deformation effect and the preformation factor is important in prediction. Then, the α decay half-lives of Z=118~120 isotopes are predicted within the IMUFM1 and the IMUFM2 by inputting the α decay energies that extracted from the sinite-range droplet model (FRDM), the Weizsäcker-Skyrme-4 (WS4) model and the Koura-Tachibaba-Uno-Yamads (KTUY) formula, respectively. By observing the evolution of the α decay half-lives, it is found that the evolution trends within the mentioned three kinds of mass models are consistent and the shell effect are shown at N=178 and 184, but the order of magnitude are different with the different kinds of mass models. Meanwhile, the dominant decay modes of the superheavy nuclei with N<186 are α decay by comparing the half-lives between α decay and spontaneous fission. So the study of α decay of superheavy nuclei is meaningful. Finally, the decay modes of 296Og, 297119 and 298120 α decay chains are predicted within the IMUFM1 and the IMUFM2 by using these there kinds of mass models, which shown that the predictions within the WS4 and KTUY mass models are more consistent with the experimental measurements. Within the FRDM2012 mass model, although the predictions of 288Fl, 285Nh and 286Fl within the IMUFM1 mass model are not consistent with the experimental measurements, the prediction of 288Fl within the IMUFM2 is good agreement with the experimental measurement, which once again verified the rationality and reliability of the IMUFM2. The predictions of this article might be helpful for identifying new nuclide in future experiments.
  • [1]

    Hofmann S, Munzenberg G. 2000Rev. Mod. Phys. 72733.

    [2]

    Morita K, Morimoto K, Kaji D et al. 2004J. Phys. Soc. Jpn. 732593.

    [3]

    Morita K, Morimoto K, Kaji D et al. 2012Rev. Mod. Phys. 81103201.

    [4]

    Oganessian Y T, Abdullin F S, Bailey P D et al. 2010Phys. Rev. Lett, 104142502.

    [5]

    Zhou S G, 2017Nucl. Phys. Rev. 34 318-331(in Chinese)[周善贵. 2017原子核物理评论34 318-331]

    [6]

    Oganessian Y T, Utyonkov V K, Lobanov Y V et al. 2006Phys. Rev. C 74044602.

    [7]

    Oganessian Y T, Utyonkov V K. 2015Nucl. Phys. A 94462.

    [8]

    Oganessian Y T, Sobiczewski A, Ter-akopian G M. 2017Phys. Scr. 92023003.

    [9]

    Oganessian Y T, Utyonkov V K, Lobanov Y V et al. 2009Phys. Rev. C 79 024603.

    [10]

    Kozulin E M, Knyazheva G N, Itkis I M et al. 2010Phys. Lett. B, 686227.

    [11]

    Li J X, Zhang H F. 2022Phys. Rev. C 105054606.

    [12]

    Li J X, Zhang H F. 2022Phys. Rev. C 106034613.

    [13]

    Li F, Zhu L, Wu Z H et al. 2018Phys. Rev. C 98014618.

    [14]

    Zhang M H, Zhang Y H, Zou Y et al. 2024Phys. Rev. C 109014622.

    [15]

    Varga K, Lovas R G, Liotta R J. 1992Phys. Rev. Lett. 6927.

    [16]

    Wauters J, Bijnens N, Denooven P et al. 1994Phys. Rev. Lett. 721329.

    [17]

    Andeyev A N, Huyse M, Duppen P V et al. 2000Nature 405430.

    [18]

    Khuyagbaatar J, Yakushev A, Dullmann C E et al. 2014Phys. Rev. Lett. 112172501.

    [19]

    Oganessian Y T, Utyonkov V K, Shumeiko M V et al. 2024Phys. Rev. C 109054307.

    [20]

    Gamow G. 1928Z. Phys. 51204.

    [21]

    Gurney R W, Condon E U. 1928Nature 122439.

    [22]

    Malik S S, Raj K Gupts, 1989Phys. Rev. C 39 1992.

    [23]

    Buck B, Merchant A C, Perez S M et al., 1993 At. Data Nucl. Data Tables 54 53

    [24]

    Mirea M. 1996Phys. Rev. C 54302.

    [25]

    Ren Z Z, Xu C, 2006Nucl. Phys. Rev. 23 369(in Chinese)[任中洲,许昌. 2023原子核物理评论23 369]

    [26]

    Royer G. 2000J. Phys. G. Nucl. Part. Phys. 261149.

    [27]

    Zhang H F, Royer G, Wang Y J et al., 2009Phys. Rev. C 80 057301.

    [28]

    Zhang H F, Bao X J, Wang J M et al., 2013Nucl. Phys. Rev. 30 241(in Chinese)[张海飞,包小军,王佳眉等. 2013原子核物理评论30 241]

    [29]

    Zou Y T, Pan X, Liu H M et al., 2021Phys. Scr. 96075301.

    [30]

    Zhang K L, Han S X, Yue S J et al., 2024Acta. Phys. Sin. 73 062101(in Chinese)[张凯林,韩胜贤,岳生俊等. 2024 73 062101]

    [31]

    Wang Y Z, Cui J P, Liu J et al., 2017Atomic Energy Science Technology. 51 1544(in Chinese)[王艳召,崔建坡,刘军等. 2017原子能科学技术51 1544]

    [32]

    Sobiczewski A, Patyk Z, Cwiok S. 1989Phys. Lett. B 224279.

    [33]

    Royer G, 2000 J. Phys. G. Nucl. Part. Phys. 261149.

    [34]

    Poenaru D N, Nagame Y, Gherghescu R A et al. 2002Phys. Rev. C 66049902.

    [35]

    Poenaru D N, Gherghescu R A, Carjan N. 2007Eur. Lett. 7762001.

    [36]

    Eunkyoung S, Yeunhwan L, Chang H H et al. 2016Phys. Rev. C 94 024320.

    [37]

    Qian Y B, Ren Z Z. 2012Phys. Rev. C 85027306.

    [38]

    Sahu B, Paira R, Rath B, 2013Nucl. Phys. A 908 40.

    [39]

    Akrawy D T, Ahmed A H. 2019Phys. Rev. C 100 044618.

    [40]

    Xing F Z, Qi H, Cui J P et al. 2022Nucl. Phys. A 1028122528.

    [41]

    Balasubramaniam M, Gupta Raj K. 1999Phys. Rev. C 60064316.

    [42]

    Santhosh K P, Biju R K. 2009J. Phys. G. Nucl. Part. Phys. 36015107.

    [43]

    Balasubramaniam M, Arunachaiam N. 2005Phys. Rev. C 71014603.

    [44]

    Dong J M, Zhang H F, Zuo W et al. 2010Chin. Phys. C 34 182.

    [45]

    Dong J M, Zhang H F, Li J Q et al. 2009Eur. Phys. J. A 41197.

    [46]

    Zhu T B, Hu B T, Zhang H F et al. 2011Commun. Theor. Phys. 55 307.

    [47]

    Xing F Z, Cui J P, Wang Y Z et al. 2021Chin. Phys. C 45 124105.

    [48]

    Santhosh K P, 2022Phys. Rev. C 106 054604.

    [49]

    Zhu D X, Liu H M, Xu Y Y et al, 2022Chin. Phys. C 46 044106.

    [50]

    Zhu D X, Li M, Xu Y Y et al., 2022Phys. Scr. 97 095304.

    [51]

    Zhang H F, Royer G. 2008Phys. Rev. C 77054318.

    [52]

    Zhang H F, Royer G, Wang Y J et al. 2009Phys. Rev. C 80057301.

    [53]

    Zhang S, Zhang Y L, Cui J P et al. 2017Phys. Rev. C 95014311.

    [54]

    Santhosh K P, Jose Tinu Ann, 2021Phys. Rev. C 104 064604.

    [55]

    Xing F Z, Cui J P, Wang Y Z et al., 2022Acta. Phys. Sin. 71 062301(in Chinese)[邢凤竹,崔建坡,王艳召等,2022 71 062301]

    [56]

    Wang Y Z, Xing F Z, Cui J P et al., 2023Chin. Phys. C 47 084101.

    [57]

    Qi L J, Zhang D M, Luo S et al., 2023Phys. Rev. C 108 014325.

    [58]

    Chandran Megha, Santhosh K P, 2023Phys. Rev. C 107 024614.

    [59]

    Wang Y Z, Xing F Z, Zhang W H et al., 2024Phys. Rev. C 110 064305.

    [60]

    Nakada H, Sugiura K. 2014Prog. Theor. Exp. Phys. 2014:033D02.

    [61]

    Thakur S, Kumar S, Kumar R,. 2013Braz. J. Phys. 43152.

    [62]

    Mo Q H, Liu M, Wang N, 2014Phys. Rev. C 90 024320.

    [63]

    Brewer N T, Utyonkov V K, Rykaczewski K P et al. 2018Phys. Rev. C 98024317.

    [64]

    Bao X J. 2019Phys. Rev. C 100011601(R).

    [65]

    Sobiczewski A. 2016Phys. Rev. C 94051302(R).

    [66]

    Mohr P. 2017Phys. Rev. C 95011302(R).

    [67]

    Santhosh K P, Jost T A, Deepak N K. 2021Phys. Rev. C 103064612.

    [68]

    Nithya C, Santhosh K P. 2023Phys. Rev. C 108014606.

    [69]

    Blocki J, Randruo J, Swiatecki W J et al., 1977 Ann. Phys. 105 427.

    [70]

    Bass R, 1973Phys. Lett. B 47 139.

    [71]

    Bass R, 1974Nucl. Phys. A 231 45.

    [72]

    Bass R, 1973Phys. Rev. Lett. 39 265.

    [73]

    Reisdorf W, 1994J. Phys. G:Nucl. Part. Phys. 20 1297.

    [74]

    Winther A, 1995Nucl. Phys. A 594 203.

    [75]

    Wong C Y, 1973Phys. Rev. Lett. 31 766.

    [76]

    Wang M, Huang J W, Kondev F G et al., 2021Chin. Phys. C 45 03003.

    [77]

    Kondev F G, Wang M, Huang J W et al., 2021Chin. Phys. C 45 03001.

    [78]

    M\ "oller P, Nix J R, Myers W D et al. 1995At. Data Nucl. Data Tables 59185.

    [79]

    M\" oller P, Sierk A J, Ichikawa T et al. 2016At. Data Nucl. Data Tables 109-1101.

    [80]

    Wang N, Liu M, Wu X Z et al. 2014Phys. Lett. B 734215.

    [81]

    Koura H, Tachibana T, Uno M et al. 2005Prog. Theor. Phys. 113305.

    [82]

    Kirson M W, 2008Nuclear Phys. A 798 29.

    [83]

    Bhagwat A, 2014Phys. Rev. C 90 064306.

    [84]

    Goriely S. 2015Nucl. Phys. A,93368.

    [85]

    Zhang K Y, Cheoun M K, Choi Y B et al. 2022At. Data Nucl. Data Tables,144101488.

    [86]

    Wang Y Z, Wang S J, Hou Z Y et al. 2015Phys. Rev. C 92064301.

    [87]

    Swiatecki W J. 1955Physical Review Journals Archive,100937.

    [88]

    Xu C, Ren Z Z. 2005Phys. Rev. C 71014309.

    [89]

    Ren Z Z, Xu C. 2005Nucl. Phys. A 75964.

    [90]

    Bao X J, Guo S Q, Zhang H F. 2015J. Phys. G. Nucl. Part. Phys. 42085101.

  • [1] 夏金戈, 李伟峰, 方基宇, 牛中明. 原子核β衰变寿命经验公式.  , doi: 10.7498/aps.73.20231653
    [2] 刘超, 刘世龙, 杨毅, 冯晶, 李昱兆. 252Cf自发裂变K X射线发射与动能-电荷关系.  , doi: 10.7498/aps.73.20240563
    [3] 张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛. 强激光场对原子核α衰变的影响.  , doi: 10.7498/aps.73.20231627
    [4] 何铁, 肖军, 安力, 阳剑, 郑普. 基于裂变γ标识技术的瞬发裂变中子谱测量新方法.  , doi: 10.7498/aps.67.20180563
    [5] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析.  , doi: 10.7498/aps.67.20181073
    [6] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器.  , doi: 10.7498/aps.61.232502
    [7] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面.  , doi: 10.7498/aps.57.1569
    [8] 贾 飞, 徐瑚珊, 郑 川, 樊瑞睿, 张雪荧, 李君清, W. Scheid. 基于双核模型对超重元素合成机制的研究.  , doi: 10.7498/aps.56.2047
    [9] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究.  , doi: 10.7498/aps.56.1347
    [10] 庆承瑞, 何祚庥. 氚核β衰变谱形的原子效应修正和中微子质量的测定.  , doi: 10.7498/aps.31.654
    [11] 罗辽复, 陆埮. 奇异粒子的非轻子衰变和层子模型.  , doi: 10.7498/aps.24.105
    [12] 王豫生, 许谨诚. Pu240自发裂变放出瞬时中子数目的几率分布.  , doi: 10.7498/aps.23.38
    [13] 黄胜年, 陈进贵, 韩洪银. U238自发裂变瞬时中子数目几率分布.  , doi: 10.7498/aps.23.46
    [14] 喻传赞, 郭建中. 裂变统计理论存在的问题.  , doi: 10.7498/aps.22.111
    [15] 卓益忠, 李泽清, 李明寿. 原子核的对相互作用对裂变碎块角分布的影响.  , doi: 10.7498/aps.22.136
    [16] 叶宣化, 王德焴. 关于裂变中子谱的进一步研究.  , doi: 10.7498/aps.21.546
    [17] 卓益忠, 李泽清. 裂变碎块角分布与鞍点结构.  , doi: 10.7498/aps.20.1003
    [18] 冯锡璋. 偶偶核的自裂变势垒厚度.  , doi: 10.7498/aps.20.938
    [19] 张历宁, 安瑛, 陈庭金, 戴元本. 复合模型和∑的四体衰变.  , doi: 10.7498/aps.18.264
    [20] 王朝俊, 苏宏渊, 何宪, 翁培焜, 梅镇岳. Yb169的衰变——稀土元素大变形核的激发能级的研究(Ⅰ).  , doi: 10.7498/aps.17.395
计量
  • 文章访问数:  22
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回
Baidu
map