搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg2+掺杂Zn2SiO4:Mn2+的溶胶-凝胶法合成及真空紫外发光特性研究

刘吉地 王育华

引用本文:
Citation:

Mg2+掺杂Zn2SiO4:Mn2+的溶胶-凝胶法合成及真空紫外发光特性研究

刘吉地, 王育华

Synthesis and luminescent properties of Mg2+ doped Zn2SiO4:Mn2+ phosphor under VUV excitation

Liu Ji- Di, Wang Yu-Hua
PDF
导出引用
  • 采用溶胶-凝胶法(sol-gel method)于不同气氛条件下成功合成了Zn1.92-xMgxSiO4:0.08Mn2+(0≤x≤0.12)系列粉末样品.利用X射线衍射(XRD)、光致发光(PL)谱等分析手段对Zn1.92-xMgxSiO4:0.08Mn2+系列
    A series of phosphors of Zn1.92-xMgxSiO4:0.08Mn(0≤x≤0.12)were successfully synthesized at various heating atmosphere via sol-gel method. The structure and luminescent properties of the samples were characterized by X-ray diffractometer (XRD) and the FLS920T Spectrophotometer, respectively. The results indicated that in the Zn1.92SiO4:0.08Mn system, the Mg2+ doped could substitute for the Zn2+ site and result in the decrease of lattice parameters. The absorption band of the MgO4 cluster was located at about 154 nm in vacuum ultraviolet region. Mg2+ ion doping has favorable influence on the photoluminescence properties of Zn2SiO4:Mn2+, the optimum concentration of Mg2+ being 0.06 mol under 147 nm excitation. The emission intensity of Zn1.92-xMgx SiO4:0.08Mn2+ phosphors calcined in the mixture of nitrogen and hydrogen were stronger than those of the phosphors calcined in other heating atmospheres, and the emission intensity of Zn1.86Mg0.06SiO4:0.08Mn2+ calcined in the mixture of N2 and H2 was 113% of that of Zn1.92SiO4:0.08Mn2+, being 5% higher than that of commercial phosphor. After Mg2+ doping the decay time of phosphor was much shortened and the decay time of Zn1.86Mg0.06SiO4:0.08Mn2+ was 3.89 ms, which was shorter by 1.33 ms than that of commercial product.
    • 基金项目: 国家自然科学基金(批准号:10874061),广东省教育部产学研结合项目(批准号:0712226100023)资助的课题.
    [1]

    [1]Kreng V B, Wang H T 2009 Comput. Ind. Eng. doi:10.1016/j.cie.2009.05.008

    [2]

    [2]Liu D L, Tu Y, Yang L L 2009 Vacuum Electronics 01 39 (in Chinese)[刘德龙、屠彦、杨兰兰 2009 真空电子技术 01 39]

    [3]

    [3]Wu C F, Meng X, Li J, Wang Y H 2009 Acta Phys. Sin. 58 6518 (in Chinese) [吴春芳、孟燮、李杰、王育华 2009 58 6518]

    [4]

    [4]Liao Q R, Zhuang w D, Xia T, Liu R H, Hu Y S, Teng X M, Liu Y H 2009 Acta Phys. Sin. 58 2776 (in Chinese) [廖秋荣、庄卫东、夏天、刘荣辉、胡运生、滕晓明、刘元红 2009 58 2776]

    [5]

    [5]Deng C Y, He D W, Zhuang W D, Wang Y S, Kang K, Huang X W 2004 Chin. Phys. 13 473

    [6]

    [6]Gou J, Wang Y H, Li F, He L 2006 Acta Phys. Sin. 55 4310 (in Chinese) [苟婧、王育华、李峰、何玲 2006 55 4310]

    [7]

    [7]Yang Z P, Liu Y F 2006 Acta Phys. Sin. 55 4946 (in Chinese) [杨志平、刘玉峰 2006 55 4946]

    [8]

    [8]Zeng J H, Fu H L, Lou T J, Yu Y, Sun Y H, Li D Y 2009 Mater. Res. Bull. 44 1106

    [9]

    [9]Mai M, Feldmann C 2009 Solid State Sci. 11 528

    [10]

    ]LukiDc' S R, PetroviDc' D M, DramiDc'anin M D, MitriDc' M, DaDcˇanin L 2008 Scripta Mater. 58 655

    [11]

    ]Wan J X, Wang Z H, Chen X Y, Mu L, Yu W C, Qian Y T 2006 J. Lumin. 121 32

    [12]

    ]Cho T H, Chang H J 2003 Ceram. Int. 29 611

    [13]

    ]Barthou C, Benoit J, Benalloul P 1994 J. Electrochem. Soc. 141 524

    [14]

    ]Pappalardo R G, Miniscalco W J, Peters T E 1993 J. Lumin.55 87

    [15]

    ]Kolk E V, Dorenbos P, Eijk C V, Bechtel H, Justel T, Nikol H, Ronda C R, Wiechert D U 2000 J. Lumin. 87-89 1246

    [16]

    ]Kang Y C, Lim M A, Park H D, Han M 2003 J. Electrochem. Soc. 150 H7

    [17]

    ]Hao Y, Wang Y H 2009 J. Alloy. Compd. 470 565

    [18]

    ]Hao Y, Wang Y H 2006 Electrochem. Solid St. 9 H100

    [19]

    ]Sharma P, Bhatti H S 2009 J. Alloy. Compd. 473 483

    [20]

    ]Hao Y, Wang Y h 2007 J. Lumin. 122-123 1006

    [21]

    ]Wang Y h, Hao Y, Li h, Yu w 2006 J. Alloy. Compd. 425 339

    [22]

    ]Im S J, Choi S Y, Manashirov O Y, Lee W T, Lee S J, Lee J W, Kim J M 1999 Proceedings of the 19th International Display Research Conference, Berlin Germany, September 6-9, 1999 P61

    [23]

    ]Mishra K C, Johnson K H, DeBoer B G, Berkowitz J K, Olsen J 1991 J. Lumin. 47 197

    [24]

    ]Masaaki, Tamatani 1974 Jpn. J. Appl. Phys. 13 950

    [25]

    ]Morimo R, Mochinaga R, Nakamura K 1994 Mater. Res. Bull. 29 751

    [26]

    ]Dexter D L 1954 J. Chem. Phys. 22 1063

    [27]

    ]Lin Y h, Tang Z L, Zhang Z T, Nan C W 2002 Appl. Phys. Lett. 81 996

    [28]

    ]Harlow G E, Shankland T J 1974 Geochim. Cosmochim. Acta. 38 589

  • [1]

    [1]Kreng V B, Wang H T 2009 Comput. Ind. Eng. doi:10.1016/j.cie.2009.05.008

    [2]

    [2]Liu D L, Tu Y, Yang L L 2009 Vacuum Electronics 01 39 (in Chinese)[刘德龙、屠彦、杨兰兰 2009 真空电子技术 01 39]

    [3]

    [3]Wu C F, Meng X, Li J, Wang Y H 2009 Acta Phys. Sin. 58 6518 (in Chinese) [吴春芳、孟燮、李杰、王育华 2009 58 6518]

    [4]

    [4]Liao Q R, Zhuang w D, Xia T, Liu R H, Hu Y S, Teng X M, Liu Y H 2009 Acta Phys. Sin. 58 2776 (in Chinese) [廖秋荣、庄卫东、夏天、刘荣辉、胡运生、滕晓明、刘元红 2009 58 2776]

    [5]

    [5]Deng C Y, He D W, Zhuang W D, Wang Y S, Kang K, Huang X W 2004 Chin. Phys. 13 473

    [6]

    [6]Gou J, Wang Y H, Li F, He L 2006 Acta Phys. Sin. 55 4310 (in Chinese) [苟婧、王育华、李峰、何玲 2006 55 4310]

    [7]

    [7]Yang Z P, Liu Y F 2006 Acta Phys. Sin. 55 4946 (in Chinese) [杨志平、刘玉峰 2006 55 4946]

    [8]

    [8]Zeng J H, Fu H L, Lou T J, Yu Y, Sun Y H, Li D Y 2009 Mater. Res. Bull. 44 1106

    [9]

    [9]Mai M, Feldmann C 2009 Solid State Sci. 11 528

    [10]

    ]LukiDc' S R, PetroviDc' D M, DramiDc'anin M D, MitriDc' M, DaDcˇanin L 2008 Scripta Mater. 58 655

    [11]

    ]Wan J X, Wang Z H, Chen X Y, Mu L, Yu W C, Qian Y T 2006 J. Lumin. 121 32

    [12]

    ]Cho T H, Chang H J 2003 Ceram. Int. 29 611

    [13]

    ]Barthou C, Benoit J, Benalloul P 1994 J. Electrochem. Soc. 141 524

    [14]

    ]Pappalardo R G, Miniscalco W J, Peters T E 1993 J. Lumin.55 87

    [15]

    ]Kolk E V, Dorenbos P, Eijk C V, Bechtel H, Justel T, Nikol H, Ronda C R, Wiechert D U 2000 J. Lumin. 87-89 1246

    [16]

    ]Kang Y C, Lim M A, Park H D, Han M 2003 J. Electrochem. Soc. 150 H7

    [17]

    ]Hao Y, Wang Y H 2009 J. Alloy. Compd. 470 565

    [18]

    ]Hao Y, Wang Y H 2006 Electrochem. Solid St. 9 H100

    [19]

    ]Sharma P, Bhatti H S 2009 J. Alloy. Compd. 473 483

    [20]

    ]Hao Y, Wang Y h 2007 J. Lumin. 122-123 1006

    [21]

    ]Wang Y h, Hao Y, Li h, Yu w 2006 J. Alloy. Compd. 425 339

    [22]

    ]Im S J, Choi S Y, Manashirov O Y, Lee W T, Lee S J, Lee J W, Kim J M 1999 Proceedings of the 19th International Display Research Conference, Berlin Germany, September 6-9, 1999 P61

    [23]

    ]Mishra K C, Johnson K H, DeBoer B G, Berkowitz J K, Olsen J 1991 J. Lumin. 47 197

    [24]

    ]Masaaki, Tamatani 1974 Jpn. J. Appl. Phys. 13 950

    [25]

    ]Morimo R, Mochinaga R, Nakamura K 1994 Mater. Res. Bull. 29 751

    [26]

    ]Dexter D L 1954 J. Chem. Phys. 22 1063

    [27]

    ]Lin Y h, Tang Z L, Zhang Z T, Nan C W 2002 Appl. Phys. Lett. 81 996

    [28]

    ]Harlow G E, Shankland T J 1974 Geochim. Cosmochim. Acta. 38 589

  • [1] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展.  , 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [2] 梁婉婷, 候峙云, 周桂耀, 夏长明, 张卫, 韦乐峰, 刘建涛. 基于溶胶-凝胶和激光熔融法制备掺镱石英玻璃.  , 2016, 65(17): 178107. doi: 10.7498/aps.65.178107
    [3] 周攀钒, 袁欢, 徐小楠, 鹿轶红, 徐明. 过渡金属与F共掺杂ZnO薄膜结构及磁、光特性.  , 2015, 64(24): 247503. doi: 10.7498/aps.64.247503
    [4] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究.  , 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [5] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究.  , 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [6] 曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周传仓. Nb/SnO2复合薄膜的制备、结构及光电性能.  , 2011, 60(3): 038203. doi: 10.7498/aps.60.038203
    [7] 王兴军, 董斌, 周治平. Er硅酸盐化合物薄膜的相转变和光致发光特性研究.  , 2010, 59(5): 3554-3557. doi: 10.7498/aps.59.3554
    [8] 张嬛, 刘发民, 丁芃, 钟文武, 周传仓. BiFeO3纳米粉的制备、结构表征及铁磁特性.  , 2010, 59(3): 2078-2084. doi: 10.7498/aps.59.2078
    [9] 罗炳成, 周超超, 陈长乐, 金克新. 单相Bi0.9Ba0.1Fe0.85Mn0.15O3陶瓷中的多铁性.  , 2009, 58(7): 4563-4566. doi: 10.7498/aps.58.4563
    [10] 胡林华, 戴俊, 刘伟庆, 王孔嘉, 戴松元. 锐钛矿相纳米TiO2晶体生长动力学及生长过程控制.  , 2009, 58(2): 1115-1119. doi: 10.7498/aps.58.1115
    [11] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究.  , 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [12] 向卫东, 唐珊珊, 张希艳, 杨昕宇, 张延华. 溶胶-凝胶法制备PbS量子点玻璃的研究.  , 2008, 57(7): 4607-4612. doi: 10.7498/aps.57.4607
    [13] 方 洪, 孙 慧, 朱 骏, 毛翔宇, 陈小兵. 溶胶-凝胶法制备Sr2Bi4Ti5O18薄膜及其铁电性能研究.  , 2006, 55(6): 3086-3090. doi: 10.7498/aps.55.3086
    [14] 贾建峰, 黄 凯, 潘清涛, 贺德衍. 溶胶-凝胶法制备(Ba0.7Sr0.3)TiO3/LaNiO3异质薄膜及其结构和介电性质研究.  , 2005, 54(9): 4406-4410. doi: 10.7498/aps.54.4406
    [15] 胡林华, 戴松元, 王孔嘉. 纳米TiO2多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响.  , 2005, 54(4): 1914-1918. doi: 10.7498/aps.54.1914
    [16] 杜丕一, 隋 帅, 翁文剑, 韩高荣, 汪建勋. Mg掺杂PST薄膜的溶胶-凝胶法制备及晶相形成研究.  , 2005, 54(11): 5411-5416. doi: 10.7498/aps.54.5411
    [17] 季振国, 何振杰, 宋永梁. p型导电掺In的SnO2薄膜的制备及表征.  , 2004, 53(12): 4330-4333. doi: 10.7498/aps.53.4330
    [18] 王 强, 沈明荣, 侯 芳, 甘肇强. 烘烤温度对溶胶-凝胶法制备镧掺杂钛酸铋薄膜结构与铁电性质的影响.  , 2004, 53(7): 2373-2377. doi: 10.7498/aps.53.2373
    [19] 徐润, 沈明荣, 葛水兵. 溶胶-凝胶法制备BaTiO3/SrTiO3多层膜的介电增强效应.  , 2002, 51(5): 1139-1143. doi: 10.7498/aps.51.1139
    [20] 杨合情, 王喧, 张邦劳, 李永放, 张良莹, 姚熹. 溶胶-凝胶法制备的GeO2-SiO2凝胶玻璃的红光发射.  , 2002, 51(1): 178-182. doi: 10.7498/aps.51.178
计量
  • 文章访问数:  4835
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-03
  • 修回日期:  2009-09-23
  • 刊出日期:  2010-05-15

/

返回文章
返回
Baidu
map