搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga+离子4s2 1S0-4s4p3P0跃迁动态极化率的理论计算

娄宗帅 王跃飞 康博溢 李睿 张文君 魏远飞 布明鹭 蔡翊宇

引用本文:
Citation:

Ga+离子4s2 1S0-4s4p3P0跃迁动态极化率的理论计算

娄宗帅, 王跃飞, 康博溢, 李睿, 张文君, 魏远飞, 布明鹭, 蔡翊宇

Theoretical calculation for dynamic polarizabilities of 4s2 1S0-4s4p3P0 transition for Ga+ ion

LOU Zongshuai, WANG Yuefei, KANG Boyi, ZHANG Wenjun, BU Minglu, WEI Yuanfei, CAI Yiyu,
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文利用相对论的组态相互作用加多体微扰理论的方法对Ga+离子的4s21S0-4s4p 3P0跃迁的动态极化率进行了理论计算。并计算出了4s21S0态和4s4p 3P0态的“幻零”波长以及跃迁4s21S0-4s4p 3P0的“魔幻”波长,对这些“幻零”波长和“魔幻”波长的精密测量提供了理论指导,对研究Ga+离子的原子结构和4s21S0、4s4p 3P0两量子态静态极化率之差的精确确定以及Ga+离子的全光囚禁具有重要意义。同时,还基于“极化率天平”方法,讨论了静态极化率测量过程中的理论计算误差随波长的变化,为进一步高精度确定4s21S0态4s4p 3P0态的静态极化率提供了理论指导。
    The transition of Ga+ ions from 4s² ¹S₀ to 4s4p ³P₀ has advantages such as a high quality factor and a small motional frequency shift, making it suitable as a reference for precision measurement experiments like optical clocks. Calculating the dynamic polarizability of 4s21S0-4s4p 3P0 transition for Ga+ ion is of great significance for exploring the potential applications of the Ga+ ion in the field of quantum precision measurement and for testing atomic and molecular structure theories. In this paper, the dynamic polarizability of the Ga+ ion 4s² ¹S₀ - 4s4p ³P₀ transition is theoretically calculated using the relativistic configuration interaction plus many-body perturbation (CI+MBPT) method. The "tune-out" wavelength for the 4s² ¹S₀ state and the 4s4p ³P₀ state, as well as the "magic" wavelength for the 4s² ¹S₀ - 4s4p ³P₀ transition, are also computed. It is observed that the resonant lines situated near a certain “turn-out” and “magic” wavelength can provide dominant contributions to the polarizability, while the remaining resonant lines generally contribute minimally. These " tune-out " and "magic" wavelengths provide theoretical guidance for precise measurements and are important for studying the atomic structure of Ga+ ions. The accurate determination of the difference in static polarizability between the 4s² ¹S₀ and 4s4p ³P₀ states is of significant importance. Additionally, based on the "polarizability scale" method, the paper discusses how the theoretical calculation errors in static polarizability measurements vary with wavelength, offering theoretical guidance for the further high-precision determination of the static polarizability of the 4s² ¹S₀ and 4s4p ³P₀ states. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Ga+ optical clock and suppressing the systematic uncertainty.
  • [1]

    Safronova M S, Kozlov M G, Clark C W 2011Phys. Rev. Lett. 107 143006

    [2]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019Phys. Rev. Lett. 123 033201

    [3]

    Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L, Huang X R 2022Eur. Phys. J. D 76 140

    [4]

    Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J, Mehlstäubler T E 2019Phys. Rev. A, 99 013405

    [5]

    Cheng Y J, Mitroy J 2013J. Phys. B: At. Mol. Opt. Phys. 46 185004

    [6]

    Tayal S S 1991 Phys. Scr. 43 270

    [7]

    Wei Y F, Tang Z M, Li C B, Huang X R 2024Acta Physica Sinica 73 103103

    [8]

    Wei, Y F, Chao S J, Cui K F, Li C B, Yu S C, Zhang H, Shu H L, Cao J, Huang X R 2024Phys. Rev. Lett. 133 033001

    [9]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024Phys. Rev. Applied 21 044017

    [10]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016Phys. Rev. Lett. 116 063001

    [11]

    Mitroy J, Safronova M S, Clark C W 2010J. Phys. B: At. Mol. Opt. Phys. 43 202001.

    [12]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74020502(R)

    [13]

    Zhang P, Cao J, Yuan J B, Liu D X, Yuan Y, Wei Y F, Shu H L, Huang X R 2021Metrologia 58 035001

    [14]

    Arora B, Nandy D K, Sahoo B K, 2012Phys. Rev. A 85 012506.

    [15]

    Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F, Huang X R 2022Chin. Phys. B 31, 083102

    [16]

    Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J, Gao K L 2015 Phys. Rev. Lett. 114 223001

    [17]

    Huang Y, Wang M, Chen Z, Li C B, Zhang H Q, Zhang B L, Tang L Y, Shi T Y, Guan H, Gao K L 2024New J. Phys. 26 043021

    [18]

    Tang Y B, Qiao H X, Shi T Y, Mitroy J 2013Phys. Rev. A 87 042517

    [19]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012Phys. Rev. lett. 109 243004

    [20]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012Phys. Rev. Lett. 109 243003

    [21]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(R)

    [22]

    Mitroy J, Zhang J Y, Bromley M W J, Rollin K G 2009 Eur. Phys. J. D 53 15

    [23]

    Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83030503

    [24]

    Yu Y M, Suo B B, Fan H 2013Phys. Rev. A 88 052518

    [25]

    Dzuba V A, Flambaum V V, Kozlov M G 1996Phys. Rev. A 54 3948

    [26]

    Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015Comput. Phys. Commun. 195 199

    [27]

    Tang Z M, Yu Y M, Jiang J, Dong C Z 2018J. Phys. B: At. Mol. Opt. Phys. 51 125002

    [28]

    Cheng Y J, Jiang J, Mitroy J 2013Phys. Rev. A 88 022511

    [29]

    Jiang J, Tang L Y, Mitroy J 2013Phys. Rev. A 87 032518

    [30]

    Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102

    [31]

    Wu L, Wang X, Wang T, Jiang J, Dong C Z 2023New J. Phys. 25 043011

    [32]

    Tang Z M, Wei Y F, Sahoo B K, Li C B, Yang Y, Zou Y M, Huang X R 2024Phys. Rev. A 110, 043108

    [33]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

    [34]

    Hao L H, Liu J J 2018J. Appl. Spectrosc 85, 730

    [35]

    Jonsson P, Andersson M, Sabel H and Brage T 2006J. Phys. B: At. Mol. Opt. Phys. 391813.

    [36]

    Isberg B, Litzen U 1985Phys. Scr. 31 533

    [37]

    Victor G A and Taylor W R 1983At. Data Nucl. Data Tables 28 107

    [38]

    Chou H, Chi H and Huang K 1994Phys. Rev. A 49 2394

    [39]

    Fischer C F and Hansen J E 1978Phys. Rev. A 17 1956

    [40]

    Andersen T, Eriksen P, Poulsen O and Ramanujam P S 1979Phys. Rev. A 202621

    [41]

    Fischer C F 2009Phys. Scr. T134 014019

    [42]

    Ekman J, Godefroid M R, Hartman H 2014Atoms 2 215

    [43]

    Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016Chin. Phys. B 25 023101

  • [1] 张永慧, 史庭云, 唐丽艳. B-样条基组方法在少电子原子结构精密计算中的应用.  , doi: 10.7498/aps.74.20241728
    [2] 白建东, 刘硕, 刘文元, 颉琦, 王军民. 极化角依赖的铯原子魔术波长光阱理论分析.  , doi: 10.7498/aps.72.20222268
    [3] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究.  , doi: 10.7498/aps.70.20201386
    [4] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构.  , doi: 10.7498/aps.66.026301
    [5] 吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍. Cu(100)表面CO分子单层膜的原子结构.  , doi: 10.7498/aps.62.186301
    [6] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 体心立方固溶体合金中的团簇+连接原子结构模型.  , doi: 10.7498/aps.60.116101
    [7] 李向东. 基于等离子体环境涨落的原子结构计算模型.  , doi: 10.7498/aps.60.053201
    [8] 青波, 程诚, 高翔, 张小乐, 李家明. 全相对论多组态原子结构及物理量的精密计算——构建准完备基以及组态相互作用.  , doi: 10.7498/aps.59.4547
    [9] 何彪, 易有根, 江少恩, 唐永建, 郑志坚. 电子碰撞Ga, As, Pt, W和Au原子Lα X射线产生截面的理论计算.  , doi: 10.7498/aps.58.6879
    [10] 常志文, 王清林, 罗有华. 自旋多重度对钛三聚体原子结构的影响.  , doi: 10.7498/aps.55.4553
    [11] 赵新新, 陶向明, 陈文斌, 陈 鑫, 尚学府, 谭明秋. Cu(100)表面c(2×2)-N原子结构与吸附行为研究.  , doi: 10.7498/aps.55.6001
    [12] 赵学安, 何军辉. 微量子腔结边电荷极化结构中的线性和二阶非线性动态电导性质的研究.  , doi: 10.7498/aps.53.1201
    [13] 涂修文, 盖峥. Ge(112)-(4×1)-In表面重构的原子结构.  , doi: 10.7498/aps.50.2439
    [14] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算).  , doi: 10.7498/aps.49.1778
    [15] 孟续军, 宗晓萍, 白 云, 孙永盛, 张景琳. 混合物质原子结构的自洽场计算.  , doi: 10.7498/aps.49.2133
    [16] 高君芳, 程鸿兴, 肖 渊, 庞文宁, 龙桂鲁, 尚仁成. 电子与钠原子散射极化参数的计算.  , doi: 10.7498/aps.47.1606
    [17] 吴正云, 黄启圣. 聚焦Ga+离子束注入方法研制半导体量子线结构.  , doi: 10.7498/aps.45.486
    [18] 仝晓民, 李家明, 邹宇. 原子结构的相对论性多通道理论——原子能级及物理参数μ-a,U-(ja)的计算.  , doi: 10.7498/aps.44.50
    [19] 承焕生, 崔志祥, 徐洪杰, 要小未, 杨福家. Al(100)表面原子结构的高能离子散射研究.  , doi: 10.7498/aps.38.1981
    [20] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率.  , doi: 10.7498/aps.38.1717
计量
  • 文章访问数:  84
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-20

/

返回文章
返回
Baidu
map