搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑索金的非弹性中子散射及第一性原理计算

刘本琼 宋建明 张伟斌 罗伟 王燕 夏元华 宗和厚 高国防 孙光爱

引用本文:
Citation:

黑索金的非弹性中子散射及第一性原理计算

刘本琼, 宋建明, 张伟斌, 罗伟, 王燕, 夏元华, 宗和厚, 高国防, 孙光爱

Inelastic neutron scattering and ab initio studies of cyclotrimethylenetrinitramine

Liu Ben-Qiong, Song Jian-Ming, Zhang Wei-Bin, Luo Wei, Wang Yan, Xia Yuan-Hua, Zong He-Hou, Gao Guo-Fang, Sun Guang-Ai
PDF
导出引用
  • 黑索金(环三亚甲基三硝胺, RDX, C3H6O6N6)是一种非常重要的次级炸药, 因其高能量密度及对外界刺激的低感度而具有广泛的军事和工业应用. 为了能在生产、运输、存储以及使用中对其行为进行有效控制, 人们对它的化学性质、力学性质, 尤其是起爆进行了大量的研究. 炸药的起爆是一个非常复杂的过程, 其中最主要的问题之一就是能量是如何从连续介质尺度的刺激转移到原子尺度引起吸热分解的. 根据冲击波致爆的非平衡态Zel'dovich-von Neumann-Doering模型, 声子作为最初的热载体在整个过程中起着非常重要的作用. 实验上, 非弹性中子散射技术是研究晶体中原子和分子运动动力学的有力手段, 尤其是对于包含了大部分声子晶格模式的低频区域来说极具优势. 利用非弹性中子散射技术测得了RDX 在10104 cm-1 范围内的振动谱, 结合固态量子化学计算, 对所测的12个振动模式进行指认. 研究结果有助于人们对起爆详细机理的认识.
    As an important secondary explosive, cyclotrimethylenetrinitramine (RDX, C3H6O6N6) is extensively used in military and industrial applications due to its high energy density and low sensitivity to external stimulations. Considerable attention has been devoted to the study of the detonation initiation, with particular interest in the mechanism by which energy is transferred from a shock wave to the internal molecular vibrations so as to begin endothermic decomposition. During the whole process, phonons as the primary carriers of heat may play an important role. Experimentally, inelastic neutron scattering (INS) technique provides a means of studying the dynamics of motions of atoms and molecules in the crystal, especially in the low frequency region which contains most phonon lattice modes. In this work, neutron diffraction pattern of polycrystalline RDX under ambient condition has been measured and compared with the calculated results, showing reasonable agreement with and thus confirming the structure of RDX. Subsequently, the vibrational INS spectrum of RDX has been measured at T=10 K over the region of 10-104~cm-1 by using cold neutron triple-axis spectrometer. On the basis of the solid-state density functional calculations with the generalized gradient approximation (BLYP and BP functionals), it is possible to perform normal-mode analysis, which agrees with previous assignments. A total of 9 phonon lattice modes and 3 internal vibrations have been identified. Eight possible doorway modes may be predicted in the energy range between 100 and 148~cm-1, which arise from the combinations of phonon lattice modes 38.3, 40.3, 50.2, 61.5~cm-1 and fundamental vibrations 86.6, 88.6, 101.4~cm-1. The doorway modes are the proposed bridge by which the energy of initial shockwave can pass from the external degrees of freedom into those of the molecule. It is shown that all of these eight modes have fundamental vibrational components that consist of nitro-group deformation vibrations. This point is of particular importance and supports the theory that the initial bond broken in detonation is the NN bond. This work may shed light on the mechanism of detonation initiation from a microscopic viewpoint.
      通信作者: 孙光爱, guangaisun_80@163.com
    • 基金项目: 国家自然科学基金(批准号: 11305150)和中国工程物理研究院科技发展基金(批准号: 2013A0302013)资助的课题.
      Corresponding author: Sun Guang-Ai, guangaisun_80@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11305150) and the Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 2013A0302013).
    [1]

    Dlott D D, Fayer M D 1990 J. Chem. Phys. 92 3798

    [2]

    Tokmakoff A, Fayer M D, Dlott D D 1993 J. Phys. Chem. 97 1901

    [3]

    Sun J, Bousquet D, Forbert H, Marx D 2010 J. Chem. Phys. 133 114508

    [4]

    Boutin H P, Prask H J, Trevino S 1966 Study of Low Frequency Molecular Motions in Explosives by Slow Neutron Inelastic Scattering (Dover: Picatinny Arsenal Dover NJ Feltman Research Labs)

    [5]

    Mitchell P C H, Parker S F, Ramirez-Cuesta A J, Tomkinson J 2005 Vibrational Spectroscopy with Neutrons (Singapore: World Scientific Publishing Co. Pte. Ltd.) p4

    [6]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese) [程和平, 但加坤, 黄智蒙, 彭辉, 陈光华 2013 62 163102]

    [7]

    Miao M S, Dreger Z A, Winey J M, Gupta Y M 2008 J. Phys. Chem. A 112 12228

    [8]

    Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505

    [9]

    Stevens L L, Haycraft J J, Eckhardt C J 2005 Cryst. Growth Des. 5 2060

    [10]

    Haycraft J J, Stevens L L, Eckhardt C J 2006 J. Appl. Phys. 100 053508

    [11]

    Rey-Lafon M, Trinquecoste C, Cavagnat R, Forel M T 1971 J. Chim. Phys. Phys.-Chim. Biol. 68 1573

    [12]

    Ciezak J A, Trevino S F 2006 J. Phys. Chem. A 110 5149

    [13]

    McCrone W 1950 Anal. Chem. 22 954

    [14]

    Choi C S, Prince E 1972 Acta Crystallogr. B 28 57

    [15]

    Owens F J, Iqbal Z 1981 J. Chem. Phys. 74 4242

    [16]

    Dreger Z A, Gupta Y M 2007 J. Phys. Chem. B 111 3893

    [17]

    Luty T, Orden P, Eckhardt C J 2002 J. Chem. Phys. 117 1775

  • [1]

    Dlott D D, Fayer M D 1990 J. Chem. Phys. 92 3798

    [2]

    Tokmakoff A, Fayer M D, Dlott D D 1993 J. Phys. Chem. 97 1901

    [3]

    Sun J, Bousquet D, Forbert H, Marx D 2010 J. Chem. Phys. 133 114508

    [4]

    Boutin H P, Prask H J, Trevino S 1966 Study of Low Frequency Molecular Motions in Explosives by Slow Neutron Inelastic Scattering (Dover: Picatinny Arsenal Dover NJ Feltman Research Labs)

    [5]

    Mitchell P C H, Parker S F, Ramirez-Cuesta A J, Tomkinson J 2005 Vibrational Spectroscopy with Neutrons (Singapore: World Scientific Publishing Co. Pte. Ltd.) p4

    [6]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese) [程和平, 但加坤, 黄智蒙, 彭辉, 陈光华 2013 62 163102]

    [7]

    Miao M S, Dreger Z A, Winey J M, Gupta Y M 2008 J. Phys. Chem. A 112 12228

    [8]

    Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505

    [9]

    Stevens L L, Haycraft J J, Eckhardt C J 2005 Cryst. Growth Des. 5 2060

    [10]

    Haycraft J J, Stevens L L, Eckhardt C J 2006 J. Appl. Phys. 100 053508

    [11]

    Rey-Lafon M, Trinquecoste C, Cavagnat R, Forel M T 1971 J. Chim. Phys. Phys.-Chim. Biol. 68 1573

    [12]

    Ciezak J A, Trevino S F 2006 J. Phys. Chem. A 110 5149

    [13]

    McCrone W 1950 Anal. Chem. 22 954

    [14]

    Choi C S, Prince E 1972 Acta Crystallogr. B 28 57

    [15]

    Owens F J, Iqbal Z 1981 J. Chem. Phys. 74 4242

    [16]

    Dreger Z A, Gupta Y M 2007 J. Phys. Chem. B 111 3893

    [17]

    Luty T, Orden P, Eckhardt C J 2002 J. Chem. Phys. 117 1775

  • [1] 范文信, 王敏杰, 焦浩乐, 路迦进, 刘海龙, 杨智芳, 席梦琦, 李淑静, 王海. 读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响.  , 2023, 72(21): 210301. doi: 10.7498/aps.72.20230966
    [2] 位付景, 张伟斌, 董闯, 陈华. 超分子结构单元研究黑索金的弹性各向异性.  , 2023, 72(9): 096201. doi: 10.7498/aps.72.20221615
    [3] 葛一凡, 吴毅萍, 臧小飞, 袁英豪, 陈麟. 暗态多极赝局域等离子模式的太赫兹涡旋光激发.  , 2020, 69(18): 184203. doi: 10.7498/aps.69.20200695
    [4] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输.  , 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [5] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性.  , 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [6] 夏峙, 李秀坤. 水下目标弹性声散射信号分离.  , 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [7] 吴良海, 张骏, 范之国, 高隽. 多次散射因素影响下天空偏振光模式的解析模型.  , 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [8] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [9] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究.  , 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [10] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [11] 侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊. 光子晶体光纤中布里渊散射声波模式特性的分析.  , 2012, 61(13): 134206. doi: 10.7498/aps.61.134206
    [12] 姜永恒, 孙成林, 李占龙, 曹安阳, 里佐威. 苯C—H伸缩振动弱增益模式的受激拉曼散射.  , 2011, 60(6): 064211. doi: 10.7498/aps.60.064211
    [13] 梁慧敏, 杜惊雷, 王宏波, 王治华, 罗时荣, 杨经国, 郑万国, 魏晓峰, 朱启华, 黄晓军, 王晓东, 郭 仪. 不同波长激光激发下C6H12受激拉曼散射模式竞争.  , 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [14] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [15] 杨昌平, 周智辉, 王 浩, K. Iwasa, M. Kohgi. 填充式方钴矿化合物CeOs4Sb12近藤相互作用的非弹性中子散射研究.  , 2006, 55(12): 6643-6646. doi: 10.7498/aps.55.6643
    [16] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱.  , 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [17] 伍瑞新, 王耀俊. 各向同性媒质中球体声散射的共振模式缺损.  , 2003, 52(8): 1948-1953. doi: 10.7498/aps.52.1948
    [18] 陶昉, 张泰永, 牛世文, 勾成, 施仲坚, 林泉. 中子非弹性散射对Bi12GeO20和Bi12SiO20旋声性的研究.  , 1986, 35(2): 196-202. doi: 10.7498/aps.35.196
    [19] 邱锡钧, 沈建国, 黄玲芳. 核物质里π介子的吸收与类声集体模式的激发.  , 1985, 34(2): 283-288. doi: 10.7498/aps.34.283
    [20] 倪皖荪. 自旋极化氢(H↓)超流气体吸附膜中声模式.  , 1983, 32(8): 1017-1026. doi: 10.7498/aps.32.1017
计量
  • 文章访问数:  7383
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-02
  • 修回日期:  2015-11-29
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map