-
在复杂网络研究中,客观且综合地评价节点性能是一个关键问题.现有方法多基于引力模型,通过结合节点的局部或全局属性评估其影响力,在实际网络中,关键节点不仅在局部结构中发挥重要作用,还具有跨社区的信息桥梁作用及显著的全局传播潜力.因此单纯依赖局部或全局属性的评价方法存在局限性.为更准确地描述网络中的引力场效应,本文提出了一种熵权重引力模型BGIM与BGIM+,通过引入节点信息熵替代传统度量指标,更全面地反映节点的不确定性与信息丰富性.此外,本文设计了引力修正因子,平衡节点的全局影响力和局部结构特性;同时,引入非对称吸引因子,量化核心与外围节点间的引力差异,并通过全局归一化调整机制缓解异质性网络中节点重要性分布的不均衡问题.实验在多个真实网络和合成网络上进行验证,结果表明,BGIM与BGIM+在关键节点识别和传播性能评估方面表现显著,为复杂网络研究中的关键节点识别提供了新的理论视角和技术工具.Accurately assessing node importance in complex networks is essential for understanding critical structures and optimizing dynamic processes. Traditional gravity-based methods, which often rely on local attributes or global shortest paths, exhibit limitations in heterogeneous networks due to insuffcient differentiation of node roles and their influence across diverse topologies. To address these challenges, we propose the Bi-Dimensional Gravity Influence Model (BGIM) and its enhanced version (BGIM+). These models introduce a novel entropy-weighted gravity framework that integrates node information entropy, gravity correction factors, and asymmetric attraction factors. By replacing degree centrality with information entropy, BGIM captures nodes’ uncertainty and information richness, offering a more comprehensive view of their potential influence.
The gravity correction factor (NGCF) combines eigenvector centrality with network constraint coeffcients to balance global and local features, while the asymmetric attraction factor (AAF) accounts for gravitational asymmetry between core and peripheral nodes. This dual-dimensional approach enables a more nuanced evaluation of node importance, addressing imbalances in influence distribution across diverse network structures. A normalization mechanism further enhances adaptability, ensuring robust performance in both sparse and dense networks.
Extensive experiments on real-world (e.g., Jazz, USAir, Email, Router) and synthetic (LFR-generated) networks validate the proposed models. Results demonstrate that BGIM and BGIM+ consistently outperform classical methods such as Degree, Closeness, and Betweenness centralities in identifying critical nodes and predicting their roles in propagation dynamics. In particular, BGIM+ exhibits superior performance in networks with complex topologies, achieving high correlation with SIR (Susceptible-Infected-Recovered) model simulations under varying propagation rates. Moreover, BGIM+ effectively balances the influence of local hubs and global bridges, making it particularly suitable for heterogeneous networks.
The study highlights the significance of incorporating multidimensional features in gravity models for accurate and robust node evaluation. The proposed models advance the field of complex network analysis by providing a versatile tool for identifying influential nodes across diverse applications, including epidemic control, information dissemination, and infrastructure resilience. Future work will explore the applicability of BGIM in temporal and dynamic network contexts, further extending its utility.-
Keywords:
- Complex networks /
- Information entropy /
- Gravity model /
- Multidimensional features
-
[1] jia Li H, Xu W, Song S, Wang W, Perc M 2021 CHAOS SOLITON FRACT. 151111294
[2] Freeman L C 1978 Soc. Networks. 1215
[3] Freeman L C 1977 Sociometry. 4035
[4] Bonacich P, Lloyd P 2001 Soc. Networks. 23191
[5] Sabidussi G 1966 Psychometrika. 31581
[6] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6888
[7] Bae J, Kim S 2014 Physica A. 395549
[8] Zeng A, Zhang C J 2013 Phys. Lett. A. 3771031
[9] Liu Y, Tang M, Zhou T, Do Y 2015 Sci Rep. 5
[10] Ma L L, Ma C, Zhang H F, Wang B H 2016 Physica A. 451205
[11] Li Z, Huang X 2021 Sci Rep. 11
[12] Liu F, Wang Z, Deng Y 2020 Knowl. Based Syst. 193105464
[13] Zhao J, Wen T, Jahanshahi H, Cheong K H 2022 Inf. Sci. 6091706
[14] Yang X, Xiao F 2021 Knowl. Based Syst. 227107198
[15] Yu Y, Zhou B, Chen L, Gao T, Liu J 2022 Entropy. 24275
[16] Jaoude A A 2017 SYST.SCI.CONTROL.ENG. 5380
[17] Hu J, Wang B, Lee D 20102010 IEEE/ACM GreenCom & CPSCom. 792
[18] Chiranjeevi M, Dhuli V S, Enduri M K, Cenkeramaddi L R 2023 IEEE Access. 11126195
[19] Wang J, Li C, yi Xia C 2018 Appl. Math. Comput. 334388
[20] Ruan Y R, Lao S Y, Tang J, Bai L, Guo Y M 2022 Acta Phys. Sin. 71176401. (in Chinese) [阮逸润, 老松杨, 汤俊, 白亮,郭延明2022 71176401]
[21] Lü L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 710168
[22] Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015 Acta Phys.Sin. 64020101. (in Chinese) [韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰2015 64020101]
[23] Brin S, Page L 1998 Comput. Netw. ISDN Syst. 30107
[24] Cao Z, Qin T, Liu T Y, Tsai M F, Hang L 2007 In Proceedings of the 24th Annual International Conference on Machine Learning (Corvallis), p 129
[25] Liang F C, Lu Y 2021 IEEE Int. Conf. Data Sci. Cyberspace. 602
[26] Rodrigues F A 2018 Math. Model. Nonlin. Dyn. Complex Syst.
[27] Burt R S, Kilduff M, Tasselli S 2013 Annu. Rev. Psychol. 64527
[28] Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 863200
[29] Hethcote H W 2000 SIAM Rev. 42599
[30] Moreno Y, Pastor-Satorras R, Vespignani A 2002 Eur. Phys. J. B. 26521
[31] Kendall M G 1938 Biometrika. 3081
计量
- 文章访问数: 178
- PDF下载量: 0
- 被引次数: 0