搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CIMI模型的高空核爆电子环向分布演化过程模拟研究

罗哲楷 孙强 谢伦 濮祖荫 宗秋刚 刘鹰 周前红 傅绥燕

引用本文:
Citation:

基于CIMI模型的高空核爆电子环向分布演化过程模拟研究

罗哲楷, 孙强, 谢伦, 濮祖荫, 宗秋刚, 刘鹰, 周前红, 傅绥燕

Simulation Study on the Azimuthal Evolution of Electrons from High-altitude Nuclear Explosions

LUO ZheKai, SUN Qiang, XIE Lun, PU ZuYin, ZONG QiuGang, LIU Ying, ZHOU QianHong, FU SuiYan
PDF
导出引用
  • 高空核爆过程会向内磁层注入大量相对论性电子,形成人工辐射带,这些高能电子可能对航天器造成显著影响。本文利用Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI模型)模拟研究了核爆注入的电子由局地集中分布向环向均匀分布演化的过程,揭示了人工辐射带形成过程中电子团表现出的螺旋包围、环向膨胀与扩散均匀的行为特征。对初始时刻集中在L=1.1 ∼2.2、环向覆盖1个时区左右的核爆电子进行的数值模拟表明,核爆注入电子主要通过螺旋包围过程演化至环向均匀分布,扩散作用的贡献相对较小。电子注入后,在地球磁场的约束下做自西向东环绕地球的漂移运动。外侧电子漂移速度更快,因此注入电子团会在环向上剪切拉伸,以螺旋线结构包围地球。此外,研究还发现螺旋结构的形成过程伴随有电子的环向膨胀,主要由漂移过程中能量色散和投掷角色散机制驱动。不同能量和投掷角的电子漂移速度不同,因此逐渐环向分离,造成环向分布范围扩展,填充螺旋结构的间隙。在通过形成螺旋结构与环向膨胀包围地球后,核爆注入的高能电子进一步通过扩散作用演变为环向均匀分布的结构,形成相对稳定的人工辐射带。
    High-altitude nuclear explosions can inject significant amounts of relativistic electrons into the inner magnetosphere, resulting in the formation of artificial radiation belts. These high-energy electrons pose a potential threat to spacecraft due to their long-term stability and impact on space weather. The investigation of the formation and evolution of artificial radiation belts is of great significance for the safety of spacecraft and human space activities. In this study, the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI model) is employed to simulate the transition of electrons from a locally concentrated distribution to an azimuthally uniform distribution, revealing the spiral encircling, azimuthal expansion, and diffusion behaviors exhibited by the electron cloud during the formation of artificial radiation belts. The CIMI model is a 4D model based on the Fokker-Planck equation. It simulates the evolution of particles across four degrees of freedom: radial, azimuthal, energy, and equatorial pitch angle. Unlike previous studies, which have mainly focused on the long-term evolution of artificial radiation belts that have already reached azimuthal uniformity, this work specifically addresses the azimuthal evolution process of the injected electrons and how they form the artificial radiation belts. Numerical simulations were conducted on the captured nuclear explosion electrons initially concentrated at L = 1.1 ~ 2.2 and covering approximately one time zone azimuthally. The results show that the injected electrons primarily evolve into an azimuthally uniform distribution through a spiral encircling process, with diffusion playing a smaller role. During this process, the electrons undergo eastward drift, with those at higher altitudes exhibiting faster drift velocities. The velocity shear leads to the formation of a helical structure around the Earth. Additionally, the formation of this spiral structure is accompanied by azimuthal expansion, driven mainly by energy and pitch angle dispersion during the drift. Electrons with different energies and equatorial pitch angles exhibit varying drift speeds, contributing to the azimuthal expansion of electron clusters during the drift. The expansion process can fill the gaps in the helical structure. Ultimately, the electron distribution achieves azimuthal uniformity through energy-pitch angle diffusion.
  • [1]

    Lyons L R 1973 Journal of Geophysical Research 786793

    [2]

    Zheng Y, Ganushkina N Y, Jiggens P, Jun I, Meier M, Minow J I, O’Brien T P, Pitchford D, Shprits Y, Tobiska W K, Xapsos M A, Guild T B, Mazur J E, Kuznetsova M M 2019 Space Weather 171384

    [3]

    Christofilos N C 1959 Journal of Geophysical Research (1896-1977) 64869

    [4]

    Beall D S, Bostrom C O, Williams D J 1967 Journal of Geophysical Research 723403

    [5]

    王建国, 刘利, 牛胜利, 左应红, 高银军, 朱金辉, 张相华, 李桠, 李夏至2023现代应用物理143

    [6]

    朱金辉, 左应红, 刘利, 牛胜利, 商鹏, 李夏至, 王学栋2023现代应用物理1444

    [7]

    Gu X D, Zhao Z Y, Ni B B, Wang F 2009 Acta Phys. Sin 585871(in Chinses) [顾旭东, 赵正予, 倪彬彬, 汪枫2009 585871

    [8]

    Tu W, Cunningham G S, Chen Y, Morley S K, Reeves G D, Blake J B, Baker D N, Spence H 2014 Geophysical Research Letters 411359

    [9]

    Fok M C, Buzulukova N Y, Chen S H, Glocer A, Nagai T, Valek P, Perez J D 2014 Journal of Geophysical Research: Space Physics 1197522

    [10]

    Fok M C, Wolf R A, Spiro R W, Moore T E 2001 Journal of Geophysical Research: Space Physics 1068417

    [11]

    Fok M ff, Kang S ff, Ferradas C P, Buzulukova N Y, Glocer A, Komar C M 2021 Journal of Geophysical Research: Space Physics 126 e2020JA028987

    [12]

    Albert J M 2005 Journal of Geophysical Research: Space Physics 110 A03218

    [13]

    Albert J M 2008 Journal of Geophysical Research: Space Physics 113 A06208

    [14]

    Albert J M, Meredith N P, Horne R B 2009 Journal of Geophysical Research: Space Physics 1141DD

    [15]

    Weimer D R 2001 Journal of Geophysical Research: Space Physics 106407

    [16]

    Tsyganenko N A 2012 Journal of Geophysical Research: Space Physics 1005599

    [17]

    Tsyganenko N A, Stern D P 1996 Journal of Geophysical Research: Space Physics 10127187

    [18]

    Tsyganenko N A, Mukai T 2003 Journal of Geophysical Research: Space Physics 1081136

    [19]

    Tsyganenko N A, Sitnov M I 2005 Journal of Geophysical Research: Space Physics 110 A03208

    [20]

    Meredith N P, Horne R B, Thorne R M, Summers D, Anderson R R 2004 Journal of Geophysical Research: Space Physics 109 A06209

    [21]

    Meredith N P, Horne R B, Sicard‐Piet A, Boscher D, Yearby K H, Li W, Thorne R M 2012 Journal of Geophysical Research: Space Physics 117 A10225

    [22]

    Rairden R L, Frank L A, Craven J D 2012 Journal of Geophysical Research: Space Physics 9113613

    [23]

    Gombosi T I, Baker D N, Balogh A, Erickson P J, Huba J D, Lanzerotti L J 2017 Space Science Reviews 212985

    [24]

    Cowee M, Winske D 2012(Report) Update on the Electron Source Model, DOI: 10.2172/1046529

    [25]

    Dyal P 2006 Journal of Geophysical Research: Space Physics 111 A12211

    [26]

    王建国, 牛胜利, 张殿辉2010高空核爆炸效应参数手册(北京: 原子能出版社), pp 259–260

    [27]

    Vette J I 1991 The AE-8 trapped electron model environment, vol. 91(Greenbelt,Md.: NSSDC/WDCA-R&S 91–24, NASA Goddard Space Flight Center), pp 3–1– 3–9

    [28]

    Hamlin D A, Karplus R, Vik R C, Watson K M 1961 Journal of Geophysical Research 661

    [29]

    Southwood D J, Kivelson M G 1981 Journal of Geophysical Research: Space Physics 865643

    [30]

    Southwood D J, Kivelson M G 1982 Journal of Geophysical Research: Space Physics 871707

    [31]

    Fei Y, Chan A A, Elkington S R, Wiltberger M J 2006 Journal of Geophysical Research: Space Physics 111 A12209

    [32]

    Lejosne S, Albert J M 2023 Frontiers in Astronomy and Space Sciences 101200485

    [33]

    Lejosne S, Albert J M, Walton S D 2023 Frontiers in Astronomy and Space Sciences 101232512

    [34]

    Sandhu J K, Rae I J, Wygant J R, Breneman A W, Tian S, Watt C E J, Horne R B, Ozeke L G, Georgiou M, Walach M T 2021 Journal of Geophysical Research: Space Physics 126 e2020JA029024

    [35]

    Aryan H, Bortnik J, Meredith N P, Horne R B, Sibeck D G, Balikhin M A 2020 Journal of Geophysical Research: Space Physics 126 e2020JA028403

    [36]

    Malaspina D M, Zhu H, Drozdov A Y 2020 Journal of Geophysical Research: Space Physics 125 e2019JA027415

  • [1] 李德彰, 卢智伟, 赵宇军, 杨小宝. 自旋半经典朗之万方程一般形式的探讨.  , doi: 10.7498/aps.72.20230106
    [2] 欧阳建明, 马燕云, 邵福球, 邹德滨, 刘建勋. 高空核爆炸X射线电离的时空分布数值模拟.  , doi: 10.7498/aps.61.242801
    [3] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高空核爆炸下大气的X射线电离及演化过程数值模拟.  , doi: 10.7498/aps.61.083201
    [4] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高能电子碰撞电离对高空核爆炸辐射电离的影响.  , doi: 10.7498/aps.61.212802
    [5] 陶应龙, 王建国, 牛胜利, 朱金辉, 范如玉. 高空核爆炸瞬发辐射电离效应的数值模拟.  , doi: 10.7498/aps.59.5914
    [6] 郭永峰, 徐伟, 李东喜, 王亮. 准单色噪声驱动的耗散动力系统的信息熵演化.  , doi: 10.7498/aps.59.2235
    [7] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应.  , doi: 10.7498/aps.58.7176
    [8] 顾旭东, 赵正予, 倪彬彬, 汪枫. 高空核爆炸形成人工辐射带的数值模拟.  , doi: 10.7498/aps.58.5871
    [9] 白占武, 蒙高庆. 周期场时间导数Ornstein-Uhlenbeck噪声Fokker-Planck方程的小参数展开求解.  , doi: 10.7498/aps.57.7477
    [10] 赵超樱, 谭维翰. 含时的线性驱动简并参量放大系统的量子起伏.  , doi: 10.7498/aps.54.4526
    [11] 焦一鸣, 龙永兴, 董家齐, 石秉仁, 高庆弟. 俘获电子效应对低杂波电流驱动的影响.  , doi: 10.7498/aps.54.180
    [12] 邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展. 飞秒激光烧蚀石英玻璃的实验与理论研究.  , doi: 10.7498/aps.53.2216
    [13] 赵超樱, 谭维翰, 郭奇志. 由非简并光学参量放大系统获得压缩态光所满足的Fokker-Planck方程及其解.  , doi: 10.7498/aps.52.2694
    [14] 朱学光, 匡光力, 赵燕平, 李有宜, 谢纪康. Fokker-Planck方程在快波加热中的应用.  , doi: 10.7498/aps.47.1137
    [15] 卢志恒, 林建恒, 胡岗. 随机共振问题Fokker-Planck方程的数值研究.  , doi: 10.7498/aps.42.1556
    [16] 屈支林, 胡岗. 非线性非势系统的Fokker-Planck方程的非定态解.  , doi: 10.7498/aps.41.1396
    [17] 谭维翰, 李宇舫, 张卫平. 具有零或负扩散系数的Fokker-Planck方程的形式解及其在量子光学中的应用.  , doi: 10.7498/aps.37.396
    [18] 胡岗, 王生贵. 具有多稳势的多变量Fokker-Planck方程非定态问题.  , doi: 10.7498/aps.35.771
    [19] 郑伟谋. 双阱势Fokker-Planck方程准确解模型.  , doi: 10.7498/aps.35.247
    [20] 胡岗. 非线性漂移的Fokker-Planck方程的非定态解.  , doi: 10.7498/aps.34.573
计量
  • 文章访问数:  241
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回
Baidu
map