搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子K-means的平台聚类编组量子增强求解方法

何一 郑寇全 荆锋 张毅军 王勋 刘颖 赵乐

引用本文:
Citation:

基于量子K-means的平台聚类编组量子增强求解方法

何一, 郑寇全, 荆锋, 张毅军, 王勋, 刘颖, 赵乐

Quantum enhanced solution method for platform clustering grouping based on quantum K-means

He Yi, Zheng Kou-Quan, Jing Feng, Zhang Yi-Jun, Wang Xun, Liu Ying, Zhao Le
PDF
HTML
导出引用
  • 针对联合作战战役行动中平台聚类编组问题, 本文提出了一种基于量子K-means的量子增强求解方法. 该方法首先分别对经典K-means算法中的聚类类别数目设定和聚类中心点选择两部分进行了优化处理; 其次, 该方法针对聚类数据样本与各聚类中心点之间的欧氏距离构建对应的量子线路; 然后, 该方法针对聚类数据集的误差平方和构建对应的量子线路. 实验结果表明, 所提方法不但有效解决了此类行动规模下的平台聚类编组问题, 与经典K-means算法相比, 算法的时间复杂度和空间复杂度都有较大幅度降低.
    The paper proposes a quantum enhanced solution method based on quantum K-means for platform clustering and grouping in joint operations campaigns. The method first calculates the number of categories for platform clustering based on the determined number of task clusters, and sets the number of clustering categories in the classical K-means algorithm. By using the location information of the tasks, the clustering center points are calculated and derived. Secondly, the Euclidean distance is used as an indicator to measure the distance between the platform data and each cluster center point. The platform data are quantized and transformed into their corresponding quantum state representations. According to theoretical derivation, the Euclidean distance solution is transformed into the quantum state inner product solution. By designing and constructing a universal quantum state inner product solution quantum circuit, the Euclidean distance solution is completed. Then, based on the sum of squared errors of the clustering dataset, the corresponding quantum circuits are constructed through calculation and deduction. The experimental results show that compared with the classical K-means algorithm, the proposed method not only effectively solves the platform clustering and grouping problem on such action scales, but also significantly reduces the time and space complexity of the algorithm .
  • 图 1  K-means算法的具体聚类流程图

    Fig. 1.  Specific clustering process diagram of the K-means algorithm.

    图 2  初始化平台集聚类分簇K值图

    Fig. 2.  K value graph of initialization platform clustering class clustering.

    图 3  制备量子态${S_{11}}$量子线路概率图

    Fig. 3.  Probability diagram for preparing quantum circuits of quantum state ${S_{11}}$.

    图 4  制备量子态${\left| 0 \right\rangle _1}{\left| \varphi \right\rangle _2}{\left| \phi \right\rangle _3}\xrightarrow{{1:H}}\frac{1}{{\sqrt 2 }}\left( {{{\left| 0 \right\rangle }_1}{{\left| \varphi \right\rangle }_2}{{\left| \phi \right\rangle }_3} + {{\left| 1 \right\rangle }_1}{{\left| \varphi \right\rangle }_2}{{\left| \phi \right\rangle }_3}} \right)$的通用量子线路图

    Fig. 4.  The general quantum circuit diagram for preparing quantum states ${\left| 0 \right\rangle _1}{\left| \varphi \right\rangle _2}{\left| \phi \right\rangle _3}\xrightarrow{{1:H}}\frac{1}{{\sqrt 2 }}\left( {{{\left| 0 \right\rangle }_1}{{\left| \varphi \right\rangle }_2}{{\left| \phi \right\rangle }_3} + {{\left| 1 \right\rangle }_1}{{\left| \varphi \right\rangle }_2}{{\left| \phi \right\rangle }_3}} \right)$.

    图 5  量子态内积求解对应的量子线路图

    Fig. 5.  The quantum circuit diagram corresponding to solving the inner product of quantum states.

    图 6  在4种公共数据集下, 两种算法的准确率比较图

    Fig. 6.  Comparison of accuracy between two algorithms on four common datasets.

    图 7  在4种公共数据集下, 两种算法的运行时间对比图

    Fig. 7.  Comparison of runtime between the two algorithms on four common datasets.

    图 8  在4种公共数据集下, 两种算法的迭代次数对比图

    Fig. 8.  Comparison of iteration times of two algorithms on four common datasets.

    图 9  作战任务区域图

    Fig. 9.  Operational mission area map.

    图 10  在3组平台数据下, 两种算法的实验结果比较图

    Fig. 10.  Comparison of experimental results of two algorithms under three sets of platform data.

    图 11  在3组平台数据下, 两种算法的运行时间对比图

    Fig. 11.  Comparison of runtime between two algorithms under three sets of platform data.

    图 12  在3组平台数据下, 两种算法的迭代次数对比图

    Fig. 12.  Comparison of iteration times of two algorithms under three platform data groups.

    表 1  实验数据集信息表

    Table 1.  Experimental dataset information table.

    数据集样本数特征维度数类别数
    Haberman30632
    Iris15043
    Diabetes76882
    Wine178133
    下载: 导出CSV

    表 2  基于QK-means的量子增强求解方法的伪代码

    Table 2.  Pseudo code of the quantum enhancement solution method based on QK means.

    算法1. 基于QK-means的量子增强求解方法的伪代码
    输入: 输入数据集S(N, M, K), 其中N表示数据集样本数量, M表示数据样本维度, K表示数据分类个数. 初始化量子软件开发环境与量子云平台.
    输出: K个聚类分簇以及每个分簇所包含的数据样本.
    初始化量子软件开发环境${Q_r}$与量子比特数量.
    1) 根据输入数据集分类个数确定聚类中心数为K
    2) 结合公共数据集实际情况, 根据3.1节中所述选取聚类中心点的方法, 将每个分簇数据集合的平均值作为初始聚类中心点位置
    3) 对数据样本和聚类中心点进行量子化, 并给SSE赋一个较大值
    4) while SSE值$ \geqslant $阈值 do
    5) 通过基于QK-means的量子线路制备量子态, 计算数据样本与各聚类中心点之间的欧氏距离$D\left( {{x_i}, {c_k}} \right)$
    6) 根据$D\left( {{x_i}, {c_k}} \right)$, 当$D\left( {{x_i}, {c_k}} \right)$取到$\mathop {\min }\limits_{i, k} D\left( {{x_i}, {c_k}} \right)$时, 将${x_i} \to {C_k}$
    7) 计算每个${N_k}$, 并求该聚类分簇的平均值${c'_k} = \tfrac{{\sum\nolimits_{{x_i} \in {C_k}} {{x_i}} }}{{{N_k}}}$
    8) 通过${c'_k}$更新聚类中心位置
    9) 求解整个聚类数据集的残差平方和${\text{SSE}} = {\sum\nolimits_{k = 1}^K {\sum\nolimits_{{x_i} \in {C_k}} {\left| {D\left( {{x_i}, {c_k}} \right)} \right|} } ^2}$
    10) end while
    11) 输出每个${C_k}$
    下载: 导出CSV
    Baidu
  • [1]

    张守玉, 张炜 2016 装备学院学报 27 36Google Scholar

    Zhang S Y, Zhang W 2016 J. Equip. Acad. 27 36Google Scholar

    [2]

    Wang X, Yao P Y, Zhang J Y, Wan L J, Jia F C 2019 J. Syst. Eng. Electron. 30 110Google Scholar

    [3]

    杨宇 2023 电讯技术 63 941

    Yang Y 2023 Telecommun. Eng. 63 941

    [4]

    Márquez C R, Braganholo V, Ribeiro C C 2024 Ann. Oper. Res. 338 05995Google Scholar

    [5]

    Macqueen J 1967 Proceedings of the 5th Berkley Symposium on Mathematical Statistics and Probability (Berkeley: University of California Press) p281

    [6]

    Lin Y S, Wang K D, Ding Z G 2023 Ieee Wirel. Commun. Le. 12 1130Google Scholar

    [7]

    Moyème K D, Yao B, Kwami S S, Pidéname T, Yendoubé L 2024 Energies 17 3022Google Scholar

    [8]

    Mottier M, Chardon G, Pascal F 2024 Ieee T. Aero. Elec. Sys. 60 3639

    [9]

    Ayad M J, Ku R K 2021 Indon. J. Electr. Eng. Co. 24 1744

    [10]

    Li Y X, Liu M L, Wang W C, Zhang Y H 2020 Ieee T. Multimedia 22 1385

    [11]

    Rani R S, Madhavan P, Prakash A 2022 Circ. Syst. Signal Pr. 41 3882Google Scholar

    [12]

    Al-Rahayfeh A, Atiewi S, Abuhussein A, Almiani M 2019 Future Internet 11 109Google Scholar

    [13]

    Tang D, Man J P, Tang L, Feng Y, Yang Q W 2020 Ad Hoc Netw. 102 102145Google Scholar

    [14]

    Pu Y N, Sun J, Tang N S, Xu Z B 2023 Image Vision Comput. 135 104707

    [15]

    Borzooei S, Miranda Ge H B, Abolfathi S, Scibilia G, Meucci L, Zanetti M C 2020 Water Sci. Technol. 81 1541Google Scholar

    [16]

    Culos A E, Andrews J L, Afshari H 2020 Commun. Stat-Simul C. 51 5658

    [17]

    Barkha N, Poonam V, Priya K 2016 IJLTET 7 121

    [18]

    Ikotun A M, Ezugwu A E, Abualigah L, Abuhaija B, Jia H E 2022 Inform. Sci. 622 178

    [19]

    Zhang Z B, Ling B W, Huang G H 2024 Ieee T. Signal Proces. 72 1348Google Scholar

    [20]

    Capó M, Pérez A, Lozano J A 2021 Ieee T. Neur. Net. Lear. 32 2195

    [21]

    Wan B T, Huang W K, Pierre B, Cheng W W, Zhou S F 2024 Granular Comput. 9 45

    [22]

    Hamzehi M, Hosseini S 2022 Multimed. Tools Appl. 81 33233Google Scholar

    [23]

    Serkan T, Fatih O 2022 Appl. Sci. 12 11

    [24]

    Eissa M A Q 2022 Tehnički Glasnik 16 3

    [25]

    Wei R K, Liu Y, Song J K, Xie Y Z, Zhou K 2024 Ieee T. Image Process. 33 1768Google Scholar

    [26]

    Pavan P, Vani B 2022 ECS Transactions 107 13055Google Scholar

    [27]

    Crognale M, Iuliis M D, Rinaldi C, Gattulli V 2023 Earthq. Eng. Eng. Vib. 22 333

    [28]

    Mohit M, Madhur M, Ketan L 2020 Int. J. Futur. Gener. Co. 13 2S

    [29]

    Ibrahem A W, Hashim H A, AbdulKhaleq N Y, Jalal A A 2022 Indon. J. Electr. Eng. Co. 27 1151

    [30]

    Bezdan T, Stoean C, Naamany A A, Bacanin N, Rashid T A, Zivkovic M, Venkatachalam K 2021 Mathematics 9 1929Google Scholar

    [31]

    Tomesh T, Gokhale P, Anschuetz E R, Chong F T C 2021 Electronics 10 1690

    [32]

    Ouedrhiri O, Banouar O, Hadaj S E, Raghay S 2022 Concurr. Comp-Pract E. 34 e6943Google Scholar

    [33]

    Gong C G, Dong Z Y, Gani A, Han Q 2021 Quantum Inf. Process. 20 130Google Scholar

    [34]

    张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华 2023 72 070302

    Zhang Y J, Mu X D, Guo L M, Zhang P, Zhao D, Bai W H 2023 Acta Phys. Sin. 72 070302

    [35]

    刘雪娟, 袁家斌, 许娟, 段博佳 2018 吉林大学学报(工学版) 48 539

    Liu X J, Yuan J B, Xu J, Duan B J 2018 J. Jilin Univ. (Eng. Ed. ) 48 539

    [36]

    Rebentrost P, Mohseni M, Lloyd S 2014 Phys. Rev. Lett. 113 130503

  • [1] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪.  , doi: 10.7498/aps.73.20231835
    [2] 何一, 郑寇全, 荆锋, 张毅军, 王勋, 刘颖, 赵乐. 基于量子K-means的平台聚类编组量子增强求解方法.  , doi: 10.7498/aps.20241265
    [3] 马腾飞, 王敏杰, 王圣智, 焦浩乐, 谢燕, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的研究.  , doi: 10.7498/aps.71.20210881
    [4] 赵子博, 庄革, 谢锦林, 渠承明, 强子薇. 用于等离子体相干模式自动识别的谱聚类算法实现.  , doi: 10.7498/aps.71.20220367
    [5] 马腾飞, 王敏杰, 王圣智, 谢燕, 焦浩乐, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的实验研究.  , doi: 10.7498/aps.70.20210881
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , doi: 10.7498/aps.68.20181837
    [7] 杨李, 宋玉蓉, 李因伟. 考虑边聚类与扩散特性的信息传播网络结构优化算法.  , doi: 10.7498/aps.67.20180395
    [8] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , doi: 10.7498/aps.67.20180330
    [9] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感.  , doi: 10.7498/aps.67.20180788
    [10] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦.  , doi: 10.7498/aps.65.236801
    [11] 毕国玲, 续志军, 陈涛, 王建立, 张延坤. 基于随机聚类的复杂背景建模与前景检测算法.  , doi: 10.7498/aps.64.150701
    [12] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权. 等离子体增强InAs单量子点荧光辐射的研究.  , doi: 10.7498/aps.63.027801
    [13] 王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐. 新型量子点场效应增强型单光子探测器.  , doi: 10.7498/aps.62.194205
    [14] 杜凌霄, 胡炼, 张兵坡, 才玺坤, 楼腾刚, 吴惠桢. 微腔中CdSe量子点荧光增强效应.  , doi: 10.7498/aps.60.117803
    [15] 谭振兵, 马丽, 刘广同, 吕力, 杨昌黎. 石墨烯量子霍尔平台与平台之间转变的标度律关系.  , doi: 10.7498/aps.60.107204
    [16] 张军峰, 胡寿松. 基于一种新型聚类算法的RBF神经网络混沌时间序列预测.  , doi: 10.7498/aps.56.713
    [17] 崔元顺. 介观多环耦合系统中的量子电流增强效应.  , doi: 10.7498/aps.54.1799
    [18] 王传奎, 江兆潭. 一类弯曲量子线的量子束缚态.  , doi: 10.7498/aps.49.1574
    [19] 涂鲜花, 李道火. 离子注入对纳米氮化硅量子点蓝光增强效应.  , doi: 10.7498/aps.49.1383
    [20] 龚尚庆, 徐至展, 潘少华. 简单三能级原子介质中由量子干涉引起的折射率增强.  , doi: 10.7498/aps.44.1051
计量
  • 文章访问数:  56
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 修回日期:  2024-10-27
  • 上网日期:  2024-11-18

/

返回文章
返回
Baidu
map