搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁声耦合: 物理、材料与器件

陈崇 马铭远 潘峰 宋成

引用本文:
Citation:

磁声耦合: 物理、材料与器件

陈崇, 马铭远, 潘峰, 宋成

Magneto-acoustic coupling: Physics, materials, and devices

Chen Chong, Ma Ming-Yuan, Pan Feng, Song Cheng
PDF
HTML
导出引用
  • 固体中的声波有两种传播方式: 一种是声体波, 以纵波或横波的形式在固体内部传播; 另一种是声表面波, 在固体表面产生并沿着表面传播. 声波射频技术利用这些声波来截取和处理信号, 尤其体现在快速发展的射频滤波器技术中. 声学滤波器因其体积小、成本低和性能稳定等多方面的优势, 在移动通信等领域得到了广泛应用. 受益于成熟的制造工艺和确定的共振频率, 声波已逐渐成为操控磁性和自旋的有力手段, 这一领域正朝着小型化、超快和节能的自旋电子学器件应用迈进. 将磁性材料集成到声学射频器件, 也开辟了对声学器件调控方法和性能提升的新思路. 本综述首先梳理了各种磁声耦合的物理机制, 并在此基础上系统介绍了声控磁化动力学、磁化翻转、磁畴和磁性斯格明子产生及运动、自旋流产生等一系列磁性和自旋现象. 同时也讨论了声控磁的逆过程——磁控声波的研究进展, 包括声波参数的磁调控和声波的非互易传播, 以及基于此开发的新型磁声器件, 如磁传感器、磁电天线、可调谐滤波器等. 最后展望了磁声耦合未来可能的研究方向和潜在的应用前景.
    Acoustic wave in solid has two modes of propagation: the bulk acoustic wave (BAW), which propagates inside solid in the form of longitudinal or transverse wave, and the surface acoustic wave (SAW), which is generated on the surface of solid and propagates along the surface. In acoustic radio frequency (RF) technologies acoustic waves are used to intercept and process RF signals, which are typified by the rapidly developing RF filter technology. Acoustic filter has the advantages of small size, low cost, steady performance and simple fabrication, and is widely used in mobile communication and other fields. Due to the mature fabrication process and well-defined resonance frequency of acoustic device, acoustic wave has become an extremely intriguing way to manipulate magnetism and spin current, with the goal of pursuing miniaturized, ultra-fast, and energy-efficient spintronic device applications. The integration of magnetic materials into acoustic RF device also provides a new way of thinking about the methods of acoustic device modulation and performance enhancement. This review first summarizes various physical mechanisms of magneto-acoustic coupling, and then based on these mechanisms, a variety of magnetic and spin phenomena such as acoustically controlled magnetization dynamics, magnetization switching, magnetic domain wall and magnetic skyrmions generation and motion, and spin current generation are systematically introduced. In addition, the research progress of magnetic control of acoustic wave, the inverse process of acoustic control of magnetism, is discussed, including the magnetic modulation of acoustic wave parameters and nonreciprocal propagation of acoustic waves, as well as new magneto-acoustic devices developed based on this, such as SAW-based magnetic field sensors, magneto-electric antennas, and tunable filters. Finally, the possible research objectives and applications of magneto-acoustic coupling in the future are prospected. In summary, the field of magneto-acoustic coupling is still in a stage of rapid development, and a series of groundbreaking breakthroughs has been made in the last decades, and the major advances are summarized in this field. The field of magneto-acoustic coupling is expected to make further significant breakthroughs, and we hope that this review will further promote the researches of physical phenomena of the coupling between magnetism and acoustic wave, spin and lattice, and potential device applications as well.
      通信作者: 宋成, songcheng@mail.tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1402603)、国家自然科学基金(批准号: 52225106, 12241404)和北京市自然科学基金(批准号: JQ20010)资助的课题.
      Corresponding author: Song Cheng, songcheng@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402603), the National Natural Science Foundation of China (Grant Nos. 52225106, 12241404), and the Natural Science Foundation of Beijing, China (Grant No. JQ20010).
    [1]

    Weiler M, Dreher L, Heeg C, Huebl H, Gross R, Brandt M S, Goennenwein S T B 2011 Phys. Rev. Lett. 106 117601Google Scholar

    [2]

    Puebla J, Hwang Y, Maekawa S, Otani Y 2022 Appl. Phys. Lett. 120 220502Google Scholar

    [3]

    Yang W G, Schmidt H 2021 Appl. Phys. Rev. 8 021304Google Scholar

    [4]

    Palneedi H, Annapureddy V, Priya S, Ryu J 2016 Actuators 5 9Google Scholar

    [5]

    Huang M X, Hu W B, Zhang H W, Bai F M 2023 J. Appl. Phys. 133 223902Google Scholar

    [6]

    Küß M, Heigl M, Flacke L, Hefele A, Hörner A, Weiler M, Albrecht M, Wixforth A 2021 Phys. Rev. Appl. 15 034046Google Scholar

    [7]

    Babu N K P, Trzaskowska A, Graczyk P, Centała G, Mieszczak S, Głowiński H, Zdunek M, Mielcarek S, Kłos J W 2021 Nano Lett. 21 946Google Scholar

    [8]

    Kurimune Y, Matsuo M, Nozaki Y 2020 Phys. Rev. Lett. 124 217205Google Scholar

    [9]

    Jaris M, Yang W, Berk C, Schmidt H 2020 Phys. Rev. B 101 214421Google Scholar

    [10]

    Labanowski D, Bhallamudi V P, Guo Q, Purser C M, McCullian B A, Hammel P C, Salahuddin S 2018 Sci. Adv. 4 eaat6574Google Scholar

    [11]

    Zhao C, Zhang Z, Li Y, Zhang W, Pearson J E, Divan R, Liu Q, Novosad V, Wang J, Hoffmann A 2021 Phys. Rev. Appl. 15 014052Google Scholar

    [12]

    Casals B, Statuto N, Foerster M, Hernández-Mínguez A, Cichelero R, Manshausen P, Mandziak A, Aballe L, Hernàndez J M, Macià F 2020 Phys. Rev. Lett. 124 137202Google Scholar

    [13]

    Chen C, Han L, Liu P S, Zhang Y C, Liang S X, Zhou Y J, Zhu W X, Fu S L, Pan F, Song C 2023 Adv. Mater. 35 2302454Google Scholar

    [14]

    Li W, Buford B, Jander A, Dhagat P 2014 J. Appl. Phys. 115 17E307Google Scholar

    [15]

    Thevenard L, Camara I S, Prieur J Y, Rovillain P, Lemaître A, Gourdon C, Duquesne J Y 2016 Phys. Rev. B 93 140405(R

    [16]

    Camara I S, Duquesne J Y, Lemaître A, Gourdon C, Thevenard L 2019 Phys. Rev. Appl. 11 014045Google Scholar

    [17]

    Cao Y, Bian X N, Yan Z, Xi L, Lei N, Qiao L, Si M S, Cao J W, Yang D Z, Xue D S 2021 Appl. Phys. Lett. 119 012401Google Scholar

    [18]

    Al Misba W, Rajib M M, Bhattacharya D, Atulasimha J 2020 Phys. Rev. Appl. 14 014088Google Scholar

    [19]

    Dean J, Bryan M T, Cooper J D, Virbule A, Cunningham J E, Hayward T J 2015 Appl. Phys. Lett. 107 142405Google Scholar

    [20]

    Edrington W, Singh U, Dominguez M A, Alexander J R, Nepal R, Adenwalla S 2018 Appl. Phys. Lett. 112 052402Google Scholar

    [21]

    Shuai J, Hunt R G, Moore T A, Cunningham J E 2023 Phys. Rev. Appl. 20 014002Google Scholar

    [22]

    Yokouchi T, Sugimoto S, Rana B, Seki S, Ogawa N, Kasai S, Otani Y 2020 Nat. Nanotechnol. 15 361Google Scholar

    [23]

    Chen R Y, Chen C, Han L, Liu P S, Su R X, Zhu W X, Zhou Y J, Pan F, Song C 2023 Nat. Commun. 14 4427Google Scholar

    [24]

    Weiler M, Huebl H, Goerg F S, Czeschka F D, Gross R, Goennenwein S T B 2012 Phys. Rev. Lett. 108 176601Google Scholar

    [25]

    Xu M, Puebla J, Auvray F, Rana B, Kondou K, Otani Y 2018 Phys. Rev. B 97 180301(R

    [26]

    Hwang Y, Puebla J, Xu M, Lagarrigue A, Kondou K, Otani Y 2020 Appl. Phys. Lett. 116 252404Google Scholar

    [27]

    Kobayashi D, Yoshikawa T, Matsuo M, Iguchi R, Maekawa S, Saitoh E, Nozaki Y 2017 Phys. Rev. Lett. 119 077202Google Scholar

    [28]

    Huang M X, Hu W B, Zhang H W, Bai F M 2023 Phys. Rev. B 107 134401Google Scholar

    [29]

    Sasaki R, Nii Y, Iguchi Y, Onose Y 2017 Phys. Rev. B 95 020407Google Scholar

    [30]

    Hernández-Mínguez A, Macià F, Hernàndez J M, Herfort J, Santos P V 2020 Phys. Rev. Appl. 13 044018Google Scholar

    [31]

    Tateno S, Nozaki Y, Nozaki Y 2020 Phys. Rev. Appl. 13 034074Google Scholar

    [32]

    Xu M, Yamamoto K, Puebla J, Baumgaertl K, Rana B, Miura K, Takahashi H, Grundler D, Maekawa S, Otani Y 2020 Sci. Adv. 6 eabb1724Google Scholar

    [33]

    Kü M, Heigl M, Flacke L, Hörner A, Weiler M, Albrecht M, Wixforth A 2020 Phys. Rev. Lett. 125 217203Google Scholar

    [34]

    Shah P J, Bas D A, Lisenkov I, Matyushov A, Sun N X, Page M R 2020 Sci. Adv. 6 eabc5648Google Scholar

    [35]

    Küß M, Heigl M, Flacke L, Hörner A, Weiler M, Wixforth A, Albrecht M 2021 Phys. Rev. Appl. 15 034060Google Scholar

    [36]

    Matsumoto H, Kawada T, Ishibashi M, Kawaguchi M, Hayashi M, 2022 Appl. Phys. Express 15 063003Google Scholar

    [37]

    Küß M, Hassan M, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 Phys. Rev. B 107 024424Google Scholar

    [38]

    Küß M, Glamsch S, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 ACS Appl. Electron. Mater. 5 5103Google Scholar

    [39]

    Schell V, Müller C, Durdaut P, Kittmann A, Thormählen L, Lofink F, Meyners D, Höft M, McCord J, Quandt E 2020 Appl. Phys. Lett. 116 073503Google Scholar

    [40]

    Hu W B, Huang M X, Xie H P, Zhang H W, Bai F M 2023 Phys. Rev. Appl. 19 014010Google Scholar

    [41]

    Nan T X, Lin H, Gao Y, Matyushov A, Yu G L, Chen H H, Sun N, Wei S J, Wang Z G, Li M H, Wang X J, Belkessam A, Guo R D, Chen B, Zhou J, Qian Z Y, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z Q, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [42]

    Liang X, Chen H, Sun N, Gao Y, Lin H, Sun N X 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting Montréal, Québec, Canada, July 5–10, 2020 p661

    [43]

    Lin H, Nan T X, Qian Z, Gao Y, Hui Y, Wang X, Guo R, Belkessam A, Shi W, Rinaldi M, Sun N X 2016 MTT-S International Microwave Symposium (IMS) San Francisco, CA, May 22–27, 2016 p1

    [44]

    Hadj-Larbi F, Serhane R 2019 Sensors Actuators A Phys. 292 169Google Scholar

    [45]

    Maekawa S, Tachiki M 1976 AIP Conf. Proc. 29 542Google Scholar

    [46]

    Matsuo M, Ieda J, Harii K, Saitoh E, Maekawa S 2013 Phys. Rev. B 87 180402Google Scholar

    [47]

    Sasaki R, Nii Y, Onose Y 2021 Nat. Commun. 12 2559Google Scholar

    [48]

    Dreher L, Weiler M, Pernpeintner M, Huebl H, Gross R, Brandt M S, Goennenwein S T B 2012 Phys. Rev. B 86 134415Google Scholar

    [49]

    Puebla J, Hwang Y, Kondou K, Otani Y 2022 Ann. Phys. 534 2100398Google Scholar

    [50]

    Berk C, Jaris M, Yang W, Dhuey S, Cabrini S, Schmidt H 2019 Nat. Commun. 10 2652Google Scholar

    [51]

    An K, Litvinenko A N, Kohno R, Fuad A A, Naletov V V, Vila L, Ebels U, de Loubens G, Hurdequint H, Beaulieu N, Ben Youssef J, Vukadinovic N, Bauer G E W, Slavin A N, Tiberkevich V S, Klein O 2020 Phys. Rev. B 101 060407Google Scholar

    [52]

    Matsuo M, Saitoh E, Maekawa S 2017 J. Phys. Soc. Japan 86 011011Google Scholar

    [53]

    Kittel C 1958 Phys. Rev. 110 836Google Scholar

    [54]

    Labanowski D, Jung A, Salahuddin S 2017 Appl. Phys. Lett. 111 102904Google Scholar

    [55]

    Arias R, Mills D L 1999 Phys. Rev. B 60 7395Google Scholar

    [56]

    Counil G, Kim J Von, Devolder T, Chappert C, Shigeto K, Otani Y 2004 J. Appl. Phys. 95 5646Google Scholar

    [57]

    Bihler C, Schoch W, Limmer W, Goennenwein S T B, Brandt M S 2009 Phys. Rev. B 79 045205Google Scholar

    [58]

    Jaeger J V, Scherbakov A V, Glavin B A, Salasyuk A S, Campion R P, Rushforth A W, Yakovlev D R, Akimov A V, Bayer M 2015 Physic Rev. B 92 020404Google Scholar

    [59]

    Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brueggemann C, Yakovlev D R, Sapega V F, Furdyna J K, Bayer M 2010 Phys. Rev. Lett. 105 117204Google Scholar

    [60]

    Janusonis J, Chang C L, Jansma T, Gatilova A, Vlasov V S, Lomonosov A M, Temnov V V, Tobey R I 2016 Physic Rev. B 94 024415Google Scholar

    [61]

    Yang W-G, Schmidt H 2020 Appl. Phys. Lett. 116 212401Google Scholar

    [62]

    Mondal S, Abeed M A, Dutta K, De A, Sahoo S, Barman A, Bandyopadhyay S 2018 ACS Appl. Mater. Interfaces 10 43970Google Scholar

    [63]

    Armstrong M R, Reed E J, Kim K-Y, Glownia J H, Howard W M, Piner E L, Roberts J C 2009 Nat. Phys. 5 285Google Scholar

    [64]

    Demokritov S O, Hillebrands B, Slavin A N 2001 Phys. Rep. 348 441Google Scholar

    [65]

    Foerster M, Macià F, Statuto N, Finizio S, Hernández-Mínguez A, Lendínez S, Santos P V, Fontcuberta J, Hernàndez J M, Kläui M, Aballe L 2017 Nat. Commun. 8 407Google Scholar

    [66]

    Davis S, Baruth A, Adenwalla S 2010 Appl. Phys. Lett. 97 232507Google Scholar

    [67]

    Li P Q, Zhou W, Peng B, Zhang C, Zhu X F, Meng L, Zheng H 2023 Phys. Rev. Appl. 20 064003Google Scholar

    [68]

    Li W, Buford B, Jander A, Dhagat P 2014 Phys. B Condens. Matter 448 151Google Scholar

    [69]

    Thevenard L, Camara I S, Majrab S, Bernard M, Rovillain P, Lemaitre A, Gourdon C, Duquesne J-Y 2016 Phys. Rev. B 93 134430Google Scholar

    [70]

    Nowak J J, Robertazzi R P, Sun J Z, Hu G, Park J-H, Lee J, Annunziata A J, Lauer G P, Kothandaraman R, O’Sullivan E J, Trouilloud P L, Kim Y, Worledge D C 2016 IEEE Magn. Lett. 7 1Google Scholar

    [71]

    Biswas A K, Bandyopadhyay S, Atulasimha J 2013 Appl. Phys. Lett. 103 232401Google Scholar

    [72]

    Roe A, Bhattacharya D, Atulasimha J 2019 Appl. Phys. Lett. 115 112405Google Scholar

    [73]

    Yang H F, Garcia-Sanchez F, Hu X K, Sievers S, Bohnert T, Costa J D, Tarequzzaman M, Ferreira R, Bieler M, Schumacher H W 2018 Appl. Phys. Lett. 113 072403Google Scholar

    [74]

    Zhang D L, Zhu J, Qu T, Lattery D M, Victora R H, Wang X, Wang J P 2020 Sci. Adv. 6 eabb4607Google Scholar

    [75]

    Ramaswamy R, Lee J M, Cai K, Yang H 2018 Appl. Phys. Rev. 5 031107Google Scholar

    [76]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 1688Google Scholar

    [77]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [78]

    Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy Y B, Parkin S S P 2007 Phys. Rev. Lett. 98 037204Google Scholar

    [79]

    Meier G, Bolte M, Eiselt R, Krueger B, Kim D-H, Fischer P 2007 Phys. Rev. Lett. 98 187202Google Scholar

    [80]

    Mihai Miron I, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G 2011 Nat. Mater. 10 419Google Scholar

    [81]

    Bryan M T, Dean J, Allwood D A 2012 Phys. Rev. B 85 144411Google Scholar

    [82]

    Wei Y, Li X, Gao R, Wu H, Wang X, Zeng Z, Wang J, Liu Q 2020 J. Magn. Magn. Mater. 502 166546Google Scholar

    [83]

    Castilla D, Yanes R, Sinusía M, Fuentes G, Grandal J, Maicas M, Álvarez-Arenas T E G, Muñoz M, Torres L, López L, Prieto J L 2020 Sci. Rep. 10 9413Google Scholar

    [84]

    Chen C, Fu S, Han L, Su R, Liu P, Chen R, Zhu W, Liao L, Pan F, Song C 2022 Adv. Electron. Mater. 8 2200593Google Scholar

    [85]

    Fert A, Reyren N, Cros V, 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [86]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784Google Scholar

    [87]

    Kang W, Huang Y Q, Zheng C T, Lv W F, Lei N, Zhang Y G, Zhang X C, Zhou Y, Zhao W S 2016 Sci. Rep. 6 23164Google Scholar

    [88]

    Zhang X C, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400Google Scholar

    [89]

    Kruchkov A J, White J S, Bartkowiak M, Zivkovic I, Magrez A, Ronnow H M 2018 Sci. Rep. 8 10466Google Scholar

    [90]

    Wang Y D, Wang L, Xia J, Lai Z X, Tian G, Zhang X C, Hou Z P, Gao X S, Mi W B, Feng C, Zeng M, Zhou G F, Yu G H, Wu G H, Zhou Y, Wang W H, Zhang X X, Liu J M 2020 Nat. Commun. 11 3577Google Scholar

    [91]

    Wang Z D, Guo M H, Zhou H A, Zhao L, Xu T, Tomasello R, Bai H, Dong Y Q, Je S G, Chao W L, Han H-S, Lee S, Lee K S, Yao Y Y, Han W, Song C, Wu H Q, Carpentieri M, Finocchio G, Im M Y, Lin S Z, Jiang W J 2020 Nat. Electron. 3 672Google Scholar

    [92]

    Yang W G, Jaris M, Berk C, Schmidt H 2019 Phys. Rev. B 99 104434Google Scholar

    [93]

    Matsuda O, Tsutsui K, Vaudel G, Pezeril T, Fujita K, Gusev V 2020 Phys. Rev. B 101 224307Google Scholar

    [94]

    Chen C, Wei D, Sun L, Lei N 2023 J. Appl. Phys. 133 203904Google Scholar

    [95]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar

    [96]

    Kamra A, Keshtgar H, Yan P, Bauer G E W 2015 Phys. Rev. B 91 104409Google Scholar

    [97]

    Puebla J, Xu M, Rana B, Yamamoto K, Maekawa S, Otani Y 2020 J. Phys. D. Appl. Phys. 53 264002Google Scholar

    [98]

    Uchida K, Adachi H, An T, Nakayama H, Toda M, Hillebrands B, Maekawa S, Saitoh E 2012 J. Appl. Phys. 111 053903Google Scholar

    [99]

    Hwang Y, Puebla J, Kondou K, Gonzalez-Ballestero C, Isshiki H, Muñoz C S, Liao L, Chen F, Luo W, Maekawa S, Otani Y 2023 Phys. Rev. Lett. 132 056704Google Scholar

    [100]

    Kawada T, Kawaguchi M, Funato T, Kohno H, Hayashi M 2021 Sci. Adv. 7 eabd9697Google Scholar

    [101]

    Verba R, Lisenkov I, Krivorotov I, Tiberkevich V, Slavin A 2018 Phys. Rev. Appl. 9 064014Google Scholar

    [102]

    Verba R, Tiberkevich V, Slavin A 2019 Phys. Rev. Appl. 12 054061Google Scholar

    [103]

    Küß M, Hassan M, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 Phys. Rev. B 107 214412Google Scholar

    [104]

    Nembach H T, Shaw J M, Weiler M, Jue E, Silva T J 2015 Nat. Phys. 11 825Google Scholar

    [105]

    Ishii Y, Sasaki R, Nii Y, Ito T, Onose Y 2018 Phys. Rev. Appl. 9 034034Google Scholar

    [106]

    Wang Y, Li J, Viehland D 2014 Mater. Today 17 269Google Scholar

    [107]

    Smole P, Ruile W, Korden C, Ludwig A, Quandt E, Krassnitzer S, Pongratz P 2003 Proc. Annu. IEEE Int. Freq. Control Symp. Tampa, FL, May 5–8, 2003 p903

    [108]

    Kittmann A, Durdaut P, Zabel S, Reermann J, Schmalz J, Spetzler B, Meyners D, Sun N X, McCord J, Gerken M, Schmidt G, Höft M, Knöchel R, Faupel F, Quandt E 2018 Sci. Rep. 8 278Google Scholar

    [109]

    Wang S, Li R, Han Y, Yao M 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC) Shenzhen, China, Octorber 11–13, 2021 p115

    [110]

    Pfeiffer C 2017 IEEE Trans. Antennas Propag. 65 1642Google Scholar

    [111]

    Zhang Y P, Guo L H, Sun M 2006 IEEE Electron Device Lett. 27 374Google Scholar

    [112]

    Le G, Wagner S, Pham C, Gomez-Diaz J S, Pham A V 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting Boston, MA, USA, 2018 pp307–308

    [113]

    Hui X, Shang F 2020 China Microwave Week International Conference on Microwave and Millimeter Wave Technology Shanghai, China, September 20–23, 2020 p5

    [114]

    Dong Y, Itoh T 2012 Proc. IEEE 100 2271Google Scholar

    [115]

    Ziolkowski R W, Jin P, Lin C C 2011 Proc. IEEE 99 1720Google Scholar

    [116]

    Luo Y, Kikuta K, Han Z, Takahashi T, Hirose A, Toshiyoshi H 2016 IEEE Electron Device Lett. 37 920Google Scholar

    [117]

    Iyer V, Makarov S N, Harty D D, Nekoogar F, Ludwig R 2010 IEEE Trans. Antennas Propag. 58 18Google Scholar

    [118]

    Lee M, Kramer B A, Chen C C, Volakis J L 2007 IEEE Trans. Antennas Propag. 55 2671Google Scholar

    [119]

    Chu L J 1948 J. Appl. Phys. 19 1163Google Scholar

    [120]

    Chen H H, Liang X F, Dong C Z, He Y F, Sun N, Zaeimbashi M, He Y X, Gao Y, Parimi P V, Lin H, Sun N X 2020 Appl. Phys. Lett. 117 170501Google Scholar

    [121]

    Ji Y H, Zhang C Y, Nan T X 2022 Phys. Rev. Appl. 18 064050Google Scholar

    [122]

    Xiao N, Wang Y, Chen L, Wang G, Wen Y, Li P 2022 IEEE Antennas Wirel. Propag. Lett. 22 34Google Scholar

    [123]

    Niu Y, Ren H 2022 IEEE Sens. J. 22 14008Google Scholar

    [124]

    Dong C, He Y, Jeong M G, Watson W, Sanghadasa M, Sun N X 2022 IEEE International Symposium on Phased Array Systems & TechnologyWaltham, Massachusetts, USA, October 11–14, 2022 p1

    [125]

    Yun X F, Lin W K, Hu R, Liu Y Z, Wang X Y, Yu G H, Zeng Z M, Zhang X P, Zhang B S 2022 Appl. Phys. Lett. 121 033501Google Scholar

    [126]

    Wang Q, Domann J, Yu G, Barra A, Wang K L, Carman G P 2018 Phys. Rev. Appl. 10 034052Google Scholar

    [127]

    Lyons T P, Puebla J, Yamamoto K, Deacon R S, Hwang Y, Ishibashi K, Maekawa S, Otani Y 2023 Phys. Rev. Lett. 131 196701Google Scholar

    [128]

    Oh J, Le M D, Nahm H-H, Sim H, Jeong J, Perring T G, Woo H, Nakajima K, Ohira-Kawamura S, Yamani Z, Yoshida Y, Eisaki H, Cheong S-W, Chernyshev A L, Park J-G 2016 Nat. Commun. 7 13146Google Scholar

    [129]

    Valiska M, Saito H, Yanagisawa T, Tabata C, Amitsuka H, Uhlirova K, Prokleska J, Proschek P, Valenta J, Misek M, Gorbunov I D, Wosnitza J, Sechovsky V 2018 Phys. Rev. B 98 174439Google Scholar

    [130]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [131]

    Vaidya P, Morley S A, van Tol J, Liu Y, Cheng R, Brataas A, Lederman D, del Barco E 2020 Science 368 160Google Scholar

    [132]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [133]

    Bozhko D A, Clausen P, Melkov G A, L’vov V S, Pomyalov A, Vasyuchka V I, Chumak A V, Hillebrands B, Serga A A 2017 Phys. Rev. Lett. 118 237201Google Scholar

    [134]

    Liao L, Puebla J, Yamamoto K, Kim J, Maekawa S, Hwang Y, Ba Y, Otani Y 2023 Phys. Rev. Lett. 131 176701Google Scholar

    [135]

    Yokoi M, Fujiwara S, Kawamura T, Arakawa T, Aoyama K, Fukuyama H, Kobayashi K, Niimi Y 2020 Sci. Adv. 6 eaba1377Google Scholar

    [136]

    Wang J, Ota S, Edlbauer H, Jadot B, Mortemousque P A, Richard A, Okazaki Y, Nakamura S, Ludwig A, Wieck A D, Urdampilleta M, Meunier T, Kodera T, Kaneko N H, Takada S, Bäuerle C 2022 Phys. Rev. X 12 031035Google Scholar

  • 图 1  磁声耦合的器件构型 (a) 声表面波器件; (b) 声体波器件

    Fig. 1.  Schematic illustration of magneto-acoustic coupling devices: (a) Surface acoustic wave device; (b) bulk acoustic wave devices.

    图 2  磁声耦合的物理机制 (a) 磁弹耦合; (b) 磁电耦合; (c) 磁-旋转耦合; (d) 自旋-旋转耦合; (e) 旋磁耦合[52]; (f) 磁子-声子耦合

    Fig. 2.  Physical mechanism of magneto-acoustic coupling: (a) Magneto-elastic coupling; (b) magnetoelectric coupling; (c) magneto-rotation coupling; (d) spin-rotation coupling; (e) gyromagnetic coupling[52]; (f) magnon-phonon coupling.

    图 3  声波驱动的磁化动力学 (a) 驱动原理, 磁场角度和声波频率依赖性[1]; (b) 声波模式依赖性[6,7]; (c) 旋磁耦合和磁弹耦合驱动的对比[8]

    Fig. 3.  Magnetization dynamics driven by acoustic waves: (a) Driven mechanism, field angle and SWA frequency dependences[1]; (b) SAW mode dependence[6,7]; (c) comparison between gyromagnetic coupling and magneto-elastic coupling[8].

    图 4  声波驱动磁化动力学的探测手段 (a) 磁光方法和阻尼因子表征[9]; (b) NV色心[10]; (c) 布里渊光散射[11]; (d) X射线磁圆二色性谱-光发射电子显微镜[12]; (e) 基于各向异性磁电阻整流效应的直流电学探测[13]

    Fig. 4.  Detection of SAW-driven magnetization dynamics: (a) Magneto-optic method and characterization of damping factor[9]; (b) NV center[10]; (c) microfocused Brillouin light scattering[11]; (d) X-ray magnetic circular dichroism-photoemission electron microscopy[12]; (e) direct current electrical detection by anisotropic magnetoresistance rectification effect[13].

    图 5  声波辅助的磁化翻转 (a) SAW辅助翻转的器件示意图[66]; (b), (c) 辅助翻转原理和聚焦SAW实现微区控制[14]; (d) 无磁场辅助下SAW引起的翻转[16]; (e) SAW辅助的自旋转移力矩翻转[18]; (f) SAW辅助的自旋轨道力矩翻转[17]

    Fig. 5.  Acoustic wave-assisted magnetization switching: (a) Schematic representation of the device used in SAW-assisted magnetization switching[66]; (b), (c) mechanism of switching and focused SAW for small spot writing[14]; (d) field-free switching induced by SAW[16]; (e) SAW-assisted spin-transfer-torque switching[18]; (f) SAW-assisted spin-orbit-torque switching[17].

    图 6  声波驱动的畴壁运动 (a) 微磁学模拟SAW在纳米线中驱动畴壁运动[19]; (b) Co/Pt多层膜中的实验结果[20]; (c) 热效应和磁弹耦合对畴壁运动贡献的区分[21]

    Fig. 6.  SAW-driven magnetic domain wall motion: (a) SAW-driven domain wall motion in magnetic nanowires by micromagnetic simulations[19]; (b) experiments in Co/Pt multilayers[20]; (c) separation of heating and magnetoelastic coupling effects in SAW-driven domain wall motion[21].

    图 7  声波驱动的斯格明子产生及运动 (a), (b) SAW辅助的斯格明子产生[22]; (c)—(f) SAW诱导的斯格明子有序产生和运动, 以及铁磁体中斯格明子霍尔效应的抑制[23]

    Fig. 7.  SAW-driven magnetic skyrmion creation and motion: (a), (b) SAW-driven magnetic skyrmion creation[22]; (c)–(f) ordered creation and motion of skyrmions with SAW, and suppression of skyrmion Hall effect in ferromagnets[23].

    图 8  声波产生自旋流 (a), (b) 声自旋泵浦[24]; (c) 声学谐振腔增强声自旋泵浦[26]; (d) 瑞利波通过自旋-旋转耦合产生自旋流[27]; (e) 水平剪切波通过自旋-旋转耦合产生自旋流[28]

    Fig. 8.  Generation of spin current by SAW: (a), (b) Acoustic spin pumping[24]; (c) enhancement of acoustic spin pump by the acoustic cavity[26]; (d) Rayleigh wave generates spin current by spin-rotation coupling[27]; (e) shear horizontal wave generates spin current by spin-rotation coupling[28].

    图 9  磁声耦合诱导的声波非互易传播 (a), (b) 磁弹耦合诱导的非互易[33]; (c), (d) 磁-旋转耦合诱导的非互易[32]; (e) 层间DMI诱导的非互易[33]; (f) 偶极耦合的铁磁多层膜中的非互易[35]; (g) RKKY耦合的铁磁多层膜中的非互易[38]

    Fig. 9.  Nonreciprocal SAW propagation induced by magneto-acoustic coupling: (a), (b) Nonreciprocity via magneto-elastic coupling[33]; (c), (d) nonreciprocity via magneto-rotation coupling[32]; (e) nonreciprocity via DMI[33]; (f) nonreciprocity in ferromagnetic multilayers mediated by dipolar coupling[35]; (g) nonreciprocity in ferromagnetic multilayers mediated by RKKY coupling[38].

    图 10  基于SAW的磁场传感器 (a) ΔE 效应原理示意图[107]; (b) 基于SAW谐振器的磁场传感器 [40]; (c) 不同方向的SRF结果; (d) 基于SAW延迟线的磁场传感器[39]; (e) 应用磁直流偏置场的磁场灵敏度; (f) 在距离载波信号的40 kHz的频率范围内的探测极限(148 MHz)[39]

    Fig. 10.  SAW-based magnetic field sensors: (a) Schematic diagram of ΔE effect [107]; (b) magnetic sensor based on SAW resonator[40]; (c) SRF results in different directions; (d) magnetic sensor based on SAW delay line[39]; (e) magnetic sensitivity by applying DC magnetic bias fields; (f) limit of detection (LOD) in the frequency range of 40 kHz from the carrier signal (148 MHz)[39].

    图 11  不同结构的磁电天线示意图, 包括NPR (a), FBAR (b)和SMR (c); (d) NPR结构磁电耦合系数随外加磁场的变化[41]; (e) FBAR天线的S参数[41]; (f) SMR天线的S参数[42]

    Fig. 11.  Schematic diagram of magnetoelectric antennas with different structures, including NPR (a), FBAR (b), SMR (c); (d) variation of magnetoelectric coupling coefficient of NPR structure with applied magnetic field[41]; (e) S parameters of FBAR antenna[41]; (f) S parameters of SMR antenna[42].

    图 12  (a) 带有两个耦合的环形FBAR谐振器的磁电滤波器的原理图[43]; (b) 零偏置场下磁电滤波器的S参数; (c) 谐振频率随外加直流磁场的函数变化

    Fig. 12.  (a) Schematic diagram of the structure of an magnetoelectric filter with two coupled toroidal FBAR resonators[43]; (b) S parameters of the magnetoelectric filter in the zero-bias field; (c) resonant frequency as a function of the applied DC magnetic field.

    表 1  磁声耦合的重要研究进展

    Table 1.  Important research progress in magneto-acoustic coupling.

    研究内容 材料体系 耦合机制 中心频率 f/GHz 进展
    声控磁化
    动力学
    Ni[1] 磁弹耦合 2.24 首次实验观测
    Ni[5] 1.725 纵漏波驱动
    Ni[6] 3.47 水平剪切波驱动, 具有不同的角度依赖性
    Ni19Fe81[8] 旋磁耦合 1.3—2.1 旋磁耦合驱动
    Ni[9] 磁弹耦合 7.8—9.8 光学激发和探测, 表征阻尼因子
    Ni/Co[10] 1.429 NV色心探测
    Ni[11] 3.56 BLS成像
    Ni[12] 0.1—2.5 XMCD-PEEM成像
    Ni[13] 1.97—3.23 直流电学探测
    声控磁
    化翻转
    FeGa[14] 磁弹耦合(非共振) 0.158 降低矫顽力
    (Ga, Mn)(As, P)[15] 0.549 矫顽力降低60%
    (Ga, Mn)As[16] 0.99 无场翻转
    Pt/Co/Ta[17] 0.076 SAW辅助SOT翻转, 临界翻转电流密度降低
    隧道结[18] 磁弹耦合 11—18 模拟SAW辅助STT翻转
    声控畴
    壁运动
    Fe70Ga18B12[19] 磁弹耦合(非共振) 4.23 微磁学模拟, 畴壁运动速度上限50 m/s
    [Co/Pt]多层膜[20] 0.097 SAW驻波使畴壁运动速度提高1个量级
    Pt/Co/Ta[21] 0.048 区分热效应和磁弹耦合对畴壁运动的贡献
    声控斯
    格明子
    Pt/Co/Ir[22] 磁弹耦合(非共振) 0.23, 0.40 斯格明子的产生
    [Co/Pd]多层膜[23] 0.366 纵漏波驱动斯格明子的有序产生和运动
    声波产生
    自旋流
    Co/Pt[24] 磁弹耦合 1.548 声自旋泵浦, 逆自旋霍尔效应探测
    Ni/Cu(Ag)/Bi2O3[25] 声自旋泵浦, 逆Edelstein效应探测
    Ni/Cu/Bi2O3[26] 2.86 谐振腔增强声自旋泵浦, 自旋流产生能力提高3倍
    Ni81Fe19/Cu[27] 自旋-旋转耦合 1.59 瑞利波产生纯自旋流(σy)
    Ni81Fe19/Cu[28] 0.666 水平剪切波产生纯自旋流(σxσz)
    声波的非
    互易传播
    Ni[29] 磁弹耦合 2.24 切应变与正应变耦合, 隔离度0.05 dB/mm
    Fe3Si[30] 3.455 切应变与正应变耦合, 隔离度0.8 dB/mm
    Ni/Si[31] 1.85 切应变与正应变耦合, 非互易性可调,
    隔离度0.03 dB/mm
    Ta/CoFeB/MgO[32] 磁-旋转耦合 6.1 旋转应变与正应变耦合, 非互易性100%
    CoFeB/Pt[33] 磁弹耦合 6.77 界面DMI诱导的非互易, 隔离度27.9 dB/mm
    FeGaB/Al2O3/FeGaB[34] 1.435 偶极耦合诱导的非互易, 隔离度22 dB/mm
    Co40Fe40B20/Au/Ni81Fe19[35] 6.87 偶极耦合诱导的非互易, 隔离度74 dB/mm
    CoFeB/Ru/CoFeB[36] 1.4 RKKY耦合诱导的非互易, 隔离度37 dB/mm
    Pt/Co/Ru/Co/Pt[37] 6.77 RKKY耦合和DMI诱导的非互易, 隔离度3 dB/mm
    CoFeB/Ru/CoFeB[38] 5.08 RKKY耦合诱导的非互易, 隔离度250 dB/mm
    磁传感器 FeCoSiB[39] 磁电耦合 0.148 SAW延迟线结构激发勒夫波, 10 Hz下
    70 pT/Hz1/2的探测极限
    FeCoSiB[40] 0.477 SAW谐振器结构激发勒夫波, 灵敏度630.4 kHz/Oe
    磁电天线 AlN/FeGaB[41] 磁电耦合 2.53 FBAR结构, 首次实验验证可行性,
    增益 –18 dBi, 辐射效率0.4%
    ZnO/FeGaB[42] 1.75 SMR结构, 增益–18.8 dBi, 功率耐受性30.4 dBm
    可调谐
    滤波器
    AlN/FeGaB[43] 磁电耦合 0.093 磁场频率可调性50 Hz/μT, 电场频率可调性2.3 kHz/V
    注: “—”表示未报道, σi (i = x, y, z)表示i方向极化的自旋流.
    下载: 导出CSV
    Baidu
  • [1]

    Weiler M, Dreher L, Heeg C, Huebl H, Gross R, Brandt M S, Goennenwein S T B 2011 Phys. Rev. Lett. 106 117601Google Scholar

    [2]

    Puebla J, Hwang Y, Maekawa S, Otani Y 2022 Appl. Phys. Lett. 120 220502Google Scholar

    [3]

    Yang W G, Schmidt H 2021 Appl. Phys. Rev. 8 021304Google Scholar

    [4]

    Palneedi H, Annapureddy V, Priya S, Ryu J 2016 Actuators 5 9Google Scholar

    [5]

    Huang M X, Hu W B, Zhang H W, Bai F M 2023 J. Appl. Phys. 133 223902Google Scholar

    [6]

    Küß M, Heigl M, Flacke L, Hefele A, Hörner A, Weiler M, Albrecht M, Wixforth A 2021 Phys. Rev. Appl. 15 034046Google Scholar

    [7]

    Babu N K P, Trzaskowska A, Graczyk P, Centała G, Mieszczak S, Głowiński H, Zdunek M, Mielcarek S, Kłos J W 2021 Nano Lett. 21 946Google Scholar

    [8]

    Kurimune Y, Matsuo M, Nozaki Y 2020 Phys. Rev. Lett. 124 217205Google Scholar

    [9]

    Jaris M, Yang W, Berk C, Schmidt H 2020 Phys. Rev. B 101 214421Google Scholar

    [10]

    Labanowski D, Bhallamudi V P, Guo Q, Purser C M, McCullian B A, Hammel P C, Salahuddin S 2018 Sci. Adv. 4 eaat6574Google Scholar

    [11]

    Zhao C, Zhang Z, Li Y, Zhang W, Pearson J E, Divan R, Liu Q, Novosad V, Wang J, Hoffmann A 2021 Phys. Rev. Appl. 15 014052Google Scholar

    [12]

    Casals B, Statuto N, Foerster M, Hernández-Mínguez A, Cichelero R, Manshausen P, Mandziak A, Aballe L, Hernàndez J M, Macià F 2020 Phys. Rev. Lett. 124 137202Google Scholar

    [13]

    Chen C, Han L, Liu P S, Zhang Y C, Liang S X, Zhou Y J, Zhu W X, Fu S L, Pan F, Song C 2023 Adv. Mater. 35 2302454Google Scholar

    [14]

    Li W, Buford B, Jander A, Dhagat P 2014 J. Appl. Phys. 115 17E307Google Scholar

    [15]

    Thevenard L, Camara I S, Prieur J Y, Rovillain P, Lemaître A, Gourdon C, Duquesne J Y 2016 Phys. Rev. B 93 140405(R

    [16]

    Camara I S, Duquesne J Y, Lemaître A, Gourdon C, Thevenard L 2019 Phys. Rev. Appl. 11 014045Google Scholar

    [17]

    Cao Y, Bian X N, Yan Z, Xi L, Lei N, Qiao L, Si M S, Cao J W, Yang D Z, Xue D S 2021 Appl. Phys. Lett. 119 012401Google Scholar

    [18]

    Al Misba W, Rajib M M, Bhattacharya D, Atulasimha J 2020 Phys. Rev. Appl. 14 014088Google Scholar

    [19]

    Dean J, Bryan M T, Cooper J D, Virbule A, Cunningham J E, Hayward T J 2015 Appl. Phys. Lett. 107 142405Google Scholar

    [20]

    Edrington W, Singh U, Dominguez M A, Alexander J R, Nepal R, Adenwalla S 2018 Appl. Phys. Lett. 112 052402Google Scholar

    [21]

    Shuai J, Hunt R G, Moore T A, Cunningham J E 2023 Phys. Rev. Appl. 20 014002Google Scholar

    [22]

    Yokouchi T, Sugimoto S, Rana B, Seki S, Ogawa N, Kasai S, Otani Y 2020 Nat. Nanotechnol. 15 361Google Scholar

    [23]

    Chen R Y, Chen C, Han L, Liu P S, Su R X, Zhu W X, Zhou Y J, Pan F, Song C 2023 Nat. Commun. 14 4427Google Scholar

    [24]

    Weiler M, Huebl H, Goerg F S, Czeschka F D, Gross R, Goennenwein S T B 2012 Phys. Rev. Lett. 108 176601Google Scholar

    [25]

    Xu M, Puebla J, Auvray F, Rana B, Kondou K, Otani Y 2018 Phys. Rev. B 97 180301(R

    [26]

    Hwang Y, Puebla J, Xu M, Lagarrigue A, Kondou K, Otani Y 2020 Appl. Phys. Lett. 116 252404Google Scholar

    [27]

    Kobayashi D, Yoshikawa T, Matsuo M, Iguchi R, Maekawa S, Saitoh E, Nozaki Y 2017 Phys. Rev. Lett. 119 077202Google Scholar

    [28]

    Huang M X, Hu W B, Zhang H W, Bai F M 2023 Phys. Rev. B 107 134401Google Scholar

    [29]

    Sasaki R, Nii Y, Iguchi Y, Onose Y 2017 Phys. Rev. B 95 020407Google Scholar

    [30]

    Hernández-Mínguez A, Macià F, Hernàndez J M, Herfort J, Santos P V 2020 Phys. Rev. Appl. 13 044018Google Scholar

    [31]

    Tateno S, Nozaki Y, Nozaki Y 2020 Phys. Rev. Appl. 13 034074Google Scholar

    [32]

    Xu M, Yamamoto K, Puebla J, Baumgaertl K, Rana B, Miura K, Takahashi H, Grundler D, Maekawa S, Otani Y 2020 Sci. Adv. 6 eabb1724Google Scholar

    [33]

    Kü M, Heigl M, Flacke L, Hörner A, Weiler M, Albrecht M, Wixforth A 2020 Phys. Rev. Lett. 125 217203Google Scholar

    [34]

    Shah P J, Bas D A, Lisenkov I, Matyushov A, Sun N X, Page M R 2020 Sci. Adv. 6 eabc5648Google Scholar

    [35]

    Küß M, Heigl M, Flacke L, Hörner A, Weiler M, Wixforth A, Albrecht M 2021 Phys. Rev. Appl. 15 034060Google Scholar

    [36]

    Matsumoto H, Kawada T, Ishibashi M, Kawaguchi M, Hayashi M, 2022 Appl. Phys. Express 15 063003Google Scholar

    [37]

    Küß M, Hassan M, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 Phys. Rev. B 107 024424Google Scholar

    [38]

    Küß M, Glamsch S, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 ACS Appl. Electron. Mater. 5 5103Google Scholar

    [39]

    Schell V, Müller C, Durdaut P, Kittmann A, Thormählen L, Lofink F, Meyners D, Höft M, McCord J, Quandt E 2020 Appl. Phys. Lett. 116 073503Google Scholar

    [40]

    Hu W B, Huang M X, Xie H P, Zhang H W, Bai F M 2023 Phys. Rev. Appl. 19 014010Google Scholar

    [41]

    Nan T X, Lin H, Gao Y, Matyushov A, Yu G L, Chen H H, Sun N, Wei S J, Wang Z G, Li M H, Wang X J, Belkessam A, Guo R D, Chen B, Zhou J, Qian Z Y, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z Q, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [42]

    Liang X, Chen H, Sun N, Gao Y, Lin H, Sun N X 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting Montréal, Québec, Canada, July 5–10, 2020 p661

    [43]

    Lin H, Nan T X, Qian Z, Gao Y, Hui Y, Wang X, Guo R, Belkessam A, Shi W, Rinaldi M, Sun N X 2016 MTT-S International Microwave Symposium (IMS) San Francisco, CA, May 22–27, 2016 p1

    [44]

    Hadj-Larbi F, Serhane R 2019 Sensors Actuators A Phys. 292 169Google Scholar

    [45]

    Maekawa S, Tachiki M 1976 AIP Conf. Proc. 29 542Google Scholar

    [46]

    Matsuo M, Ieda J, Harii K, Saitoh E, Maekawa S 2013 Phys. Rev. B 87 180402Google Scholar

    [47]

    Sasaki R, Nii Y, Onose Y 2021 Nat. Commun. 12 2559Google Scholar

    [48]

    Dreher L, Weiler M, Pernpeintner M, Huebl H, Gross R, Brandt M S, Goennenwein S T B 2012 Phys. Rev. B 86 134415Google Scholar

    [49]

    Puebla J, Hwang Y, Kondou K, Otani Y 2022 Ann. Phys. 534 2100398Google Scholar

    [50]

    Berk C, Jaris M, Yang W, Dhuey S, Cabrini S, Schmidt H 2019 Nat. Commun. 10 2652Google Scholar

    [51]

    An K, Litvinenko A N, Kohno R, Fuad A A, Naletov V V, Vila L, Ebels U, de Loubens G, Hurdequint H, Beaulieu N, Ben Youssef J, Vukadinovic N, Bauer G E W, Slavin A N, Tiberkevich V S, Klein O 2020 Phys. Rev. B 101 060407Google Scholar

    [52]

    Matsuo M, Saitoh E, Maekawa S 2017 J. Phys. Soc. Japan 86 011011Google Scholar

    [53]

    Kittel C 1958 Phys. Rev. 110 836Google Scholar

    [54]

    Labanowski D, Jung A, Salahuddin S 2017 Appl. Phys. Lett. 111 102904Google Scholar

    [55]

    Arias R, Mills D L 1999 Phys. Rev. B 60 7395Google Scholar

    [56]

    Counil G, Kim J Von, Devolder T, Chappert C, Shigeto K, Otani Y 2004 J. Appl. Phys. 95 5646Google Scholar

    [57]

    Bihler C, Schoch W, Limmer W, Goennenwein S T B, Brandt M S 2009 Phys. Rev. B 79 045205Google Scholar

    [58]

    Jaeger J V, Scherbakov A V, Glavin B A, Salasyuk A S, Campion R P, Rushforth A W, Yakovlev D R, Akimov A V, Bayer M 2015 Physic Rev. B 92 020404Google Scholar

    [59]

    Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brueggemann C, Yakovlev D R, Sapega V F, Furdyna J K, Bayer M 2010 Phys. Rev. Lett. 105 117204Google Scholar

    [60]

    Janusonis J, Chang C L, Jansma T, Gatilova A, Vlasov V S, Lomonosov A M, Temnov V V, Tobey R I 2016 Physic Rev. B 94 024415Google Scholar

    [61]

    Yang W-G, Schmidt H 2020 Appl. Phys. Lett. 116 212401Google Scholar

    [62]

    Mondal S, Abeed M A, Dutta K, De A, Sahoo S, Barman A, Bandyopadhyay S 2018 ACS Appl. Mater. Interfaces 10 43970Google Scholar

    [63]

    Armstrong M R, Reed E J, Kim K-Y, Glownia J H, Howard W M, Piner E L, Roberts J C 2009 Nat. Phys. 5 285Google Scholar

    [64]

    Demokritov S O, Hillebrands B, Slavin A N 2001 Phys. Rep. 348 441Google Scholar

    [65]

    Foerster M, Macià F, Statuto N, Finizio S, Hernández-Mínguez A, Lendínez S, Santos P V, Fontcuberta J, Hernàndez J M, Kläui M, Aballe L 2017 Nat. Commun. 8 407Google Scholar

    [66]

    Davis S, Baruth A, Adenwalla S 2010 Appl. Phys. Lett. 97 232507Google Scholar

    [67]

    Li P Q, Zhou W, Peng B, Zhang C, Zhu X F, Meng L, Zheng H 2023 Phys. Rev. Appl. 20 064003Google Scholar

    [68]

    Li W, Buford B, Jander A, Dhagat P 2014 Phys. B Condens. Matter 448 151Google Scholar

    [69]

    Thevenard L, Camara I S, Majrab S, Bernard M, Rovillain P, Lemaitre A, Gourdon C, Duquesne J-Y 2016 Phys. Rev. B 93 134430Google Scholar

    [70]

    Nowak J J, Robertazzi R P, Sun J Z, Hu G, Park J-H, Lee J, Annunziata A J, Lauer G P, Kothandaraman R, O’Sullivan E J, Trouilloud P L, Kim Y, Worledge D C 2016 IEEE Magn. Lett. 7 1Google Scholar

    [71]

    Biswas A K, Bandyopadhyay S, Atulasimha J 2013 Appl. Phys. Lett. 103 232401Google Scholar

    [72]

    Roe A, Bhattacharya D, Atulasimha J 2019 Appl. Phys. Lett. 115 112405Google Scholar

    [73]

    Yang H F, Garcia-Sanchez F, Hu X K, Sievers S, Bohnert T, Costa J D, Tarequzzaman M, Ferreira R, Bieler M, Schumacher H W 2018 Appl. Phys. Lett. 113 072403Google Scholar

    [74]

    Zhang D L, Zhu J, Qu T, Lattery D M, Victora R H, Wang X, Wang J P 2020 Sci. Adv. 6 eabb4607Google Scholar

    [75]

    Ramaswamy R, Lee J M, Cai K, Yang H 2018 Appl. Phys. Rev. 5 031107Google Scholar

    [76]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 1688Google Scholar

    [77]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [78]

    Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy Y B, Parkin S S P 2007 Phys. Rev. Lett. 98 037204Google Scholar

    [79]

    Meier G, Bolte M, Eiselt R, Krueger B, Kim D-H, Fischer P 2007 Phys. Rev. Lett. 98 187202Google Scholar

    [80]

    Mihai Miron I, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G 2011 Nat. Mater. 10 419Google Scholar

    [81]

    Bryan M T, Dean J, Allwood D A 2012 Phys. Rev. B 85 144411Google Scholar

    [82]

    Wei Y, Li X, Gao R, Wu H, Wang X, Zeng Z, Wang J, Liu Q 2020 J. Magn. Magn. Mater. 502 166546Google Scholar

    [83]

    Castilla D, Yanes R, Sinusía M, Fuentes G, Grandal J, Maicas M, Álvarez-Arenas T E G, Muñoz M, Torres L, López L, Prieto J L 2020 Sci. Rep. 10 9413Google Scholar

    [84]

    Chen C, Fu S, Han L, Su R, Liu P, Chen R, Zhu W, Liao L, Pan F, Song C 2022 Adv. Electron. Mater. 8 2200593Google Scholar

    [85]

    Fert A, Reyren N, Cros V, 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [86]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784Google Scholar

    [87]

    Kang W, Huang Y Q, Zheng C T, Lv W F, Lei N, Zhang Y G, Zhang X C, Zhou Y, Zhao W S 2016 Sci. Rep. 6 23164Google Scholar

    [88]

    Zhang X C, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400Google Scholar

    [89]

    Kruchkov A J, White J S, Bartkowiak M, Zivkovic I, Magrez A, Ronnow H M 2018 Sci. Rep. 8 10466Google Scholar

    [90]

    Wang Y D, Wang L, Xia J, Lai Z X, Tian G, Zhang X C, Hou Z P, Gao X S, Mi W B, Feng C, Zeng M, Zhou G F, Yu G H, Wu G H, Zhou Y, Wang W H, Zhang X X, Liu J M 2020 Nat. Commun. 11 3577Google Scholar

    [91]

    Wang Z D, Guo M H, Zhou H A, Zhao L, Xu T, Tomasello R, Bai H, Dong Y Q, Je S G, Chao W L, Han H-S, Lee S, Lee K S, Yao Y Y, Han W, Song C, Wu H Q, Carpentieri M, Finocchio G, Im M Y, Lin S Z, Jiang W J 2020 Nat. Electron. 3 672Google Scholar

    [92]

    Yang W G, Jaris M, Berk C, Schmidt H 2019 Phys. Rev. B 99 104434Google Scholar

    [93]

    Matsuda O, Tsutsui K, Vaudel G, Pezeril T, Fujita K, Gusev V 2020 Phys. Rev. B 101 224307Google Scholar

    [94]

    Chen C, Wei D, Sun L, Lei N 2023 J. Appl. Phys. 133 203904Google Scholar

    [95]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar

    [96]

    Kamra A, Keshtgar H, Yan P, Bauer G E W 2015 Phys. Rev. B 91 104409Google Scholar

    [97]

    Puebla J, Xu M, Rana B, Yamamoto K, Maekawa S, Otani Y 2020 J. Phys. D. Appl. Phys. 53 264002Google Scholar

    [98]

    Uchida K, Adachi H, An T, Nakayama H, Toda M, Hillebrands B, Maekawa S, Saitoh E 2012 J. Appl. Phys. 111 053903Google Scholar

    [99]

    Hwang Y, Puebla J, Kondou K, Gonzalez-Ballestero C, Isshiki H, Muñoz C S, Liao L, Chen F, Luo W, Maekawa S, Otani Y 2023 Phys. Rev. Lett. 132 056704Google Scholar

    [100]

    Kawada T, Kawaguchi M, Funato T, Kohno H, Hayashi M 2021 Sci. Adv. 7 eabd9697Google Scholar

    [101]

    Verba R, Lisenkov I, Krivorotov I, Tiberkevich V, Slavin A 2018 Phys. Rev. Appl. 9 064014Google Scholar

    [102]

    Verba R, Tiberkevich V, Slavin A 2019 Phys. Rev. Appl. 12 054061Google Scholar

    [103]

    Küß M, Hassan M, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 Phys. Rev. B 107 214412Google Scholar

    [104]

    Nembach H T, Shaw J M, Weiler M, Jue E, Silva T J 2015 Nat. Phys. 11 825Google Scholar

    [105]

    Ishii Y, Sasaki R, Nii Y, Ito T, Onose Y 2018 Phys. Rev. Appl. 9 034034Google Scholar

    [106]

    Wang Y, Li J, Viehland D 2014 Mater. Today 17 269Google Scholar

    [107]

    Smole P, Ruile W, Korden C, Ludwig A, Quandt E, Krassnitzer S, Pongratz P 2003 Proc. Annu. IEEE Int. Freq. Control Symp. Tampa, FL, May 5–8, 2003 p903

    [108]

    Kittmann A, Durdaut P, Zabel S, Reermann J, Schmalz J, Spetzler B, Meyners D, Sun N X, McCord J, Gerken M, Schmidt G, Höft M, Knöchel R, Faupel F, Quandt E 2018 Sci. Rep. 8 278Google Scholar

    [109]

    Wang S, Li R, Han Y, Yao M 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC) Shenzhen, China, Octorber 11–13, 2021 p115

    [110]

    Pfeiffer C 2017 IEEE Trans. Antennas Propag. 65 1642Google Scholar

    [111]

    Zhang Y P, Guo L H, Sun M 2006 IEEE Electron Device Lett. 27 374Google Scholar

    [112]

    Le G, Wagner S, Pham C, Gomez-Diaz J S, Pham A V 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting Boston, MA, USA, 2018 pp307–308

    [113]

    Hui X, Shang F 2020 China Microwave Week International Conference on Microwave and Millimeter Wave Technology Shanghai, China, September 20–23, 2020 p5

    [114]

    Dong Y, Itoh T 2012 Proc. IEEE 100 2271Google Scholar

    [115]

    Ziolkowski R W, Jin P, Lin C C 2011 Proc. IEEE 99 1720Google Scholar

    [116]

    Luo Y, Kikuta K, Han Z, Takahashi T, Hirose A, Toshiyoshi H 2016 IEEE Electron Device Lett. 37 920Google Scholar

    [117]

    Iyer V, Makarov S N, Harty D D, Nekoogar F, Ludwig R 2010 IEEE Trans. Antennas Propag. 58 18Google Scholar

    [118]

    Lee M, Kramer B A, Chen C C, Volakis J L 2007 IEEE Trans. Antennas Propag. 55 2671Google Scholar

    [119]

    Chu L J 1948 J. Appl. Phys. 19 1163Google Scholar

    [120]

    Chen H H, Liang X F, Dong C Z, He Y F, Sun N, Zaeimbashi M, He Y X, Gao Y, Parimi P V, Lin H, Sun N X 2020 Appl. Phys. Lett. 117 170501Google Scholar

    [121]

    Ji Y H, Zhang C Y, Nan T X 2022 Phys. Rev. Appl. 18 064050Google Scholar

    [122]

    Xiao N, Wang Y, Chen L, Wang G, Wen Y, Li P 2022 IEEE Antennas Wirel. Propag. Lett. 22 34Google Scholar

    [123]

    Niu Y, Ren H 2022 IEEE Sens. J. 22 14008Google Scholar

    [124]

    Dong C, He Y, Jeong M G, Watson W, Sanghadasa M, Sun N X 2022 IEEE International Symposium on Phased Array Systems & TechnologyWaltham, Massachusetts, USA, October 11–14, 2022 p1

    [125]

    Yun X F, Lin W K, Hu R, Liu Y Z, Wang X Y, Yu G H, Zeng Z M, Zhang X P, Zhang B S 2022 Appl. Phys. Lett. 121 033501Google Scholar

    [126]

    Wang Q, Domann J, Yu G, Barra A, Wang K L, Carman G P 2018 Phys. Rev. Appl. 10 034052Google Scholar

    [127]

    Lyons T P, Puebla J, Yamamoto K, Deacon R S, Hwang Y, Ishibashi K, Maekawa S, Otani Y 2023 Phys. Rev. Lett. 131 196701Google Scholar

    [128]

    Oh J, Le M D, Nahm H-H, Sim H, Jeong J, Perring T G, Woo H, Nakajima K, Ohira-Kawamura S, Yamani Z, Yoshida Y, Eisaki H, Cheong S-W, Chernyshev A L, Park J-G 2016 Nat. Commun. 7 13146Google Scholar

    [129]

    Valiska M, Saito H, Yanagisawa T, Tabata C, Amitsuka H, Uhlirova K, Prokleska J, Proschek P, Valenta J, Misek M, Gorbunov I D, Wosnitza J, Sechovsky V 2018 Phys. Rev. B 98 174439Google Scholar

    [130]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [131]

    Vaidya P, Morley S A, van Tol J, Liu Y, Cheng R, Brataas A, Lederman D, del Barco E 2020 Science 368 160Google Scholar

    [132]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [133]

    Bozhko D A, Clausen P, Melkov G A, L’vov V S, Pomyalov A, Vasyuchka V I, Chumak A V, Hillebrands B, Serga A A 2017 Phys. Rev. Lett. 118 237201Google Scholar

    [134]

    Liao L, Puebla J, Yamamoto K, Kim J, Maekawa S, Hwang Y, Ba Y, Otani Y 2023 Phys. Rev. Lett. 131 176701Google Scholar

    [135]

    Yokoi M, Fujiwara S, Kawamura T, Arakawa T, Aoyama K, Fukuyama H, Kobayashi K, Niimi Y 2020 Sci. Adv. 6 eaba1377Google Scholar

    [136]

    Wang J, Ota S, Edlbauer H, Jadot B, Mortemousque P A, Richard A, Okazaki Y, Nakamura S, Ludwig A, Wieck A D, Urdampilleta M, Meunier T, Kodera T, Kaneko N H, Takada S, Bäuerle C 2022 Phys. Rev. X 12 031035Google Scholar

  • [1] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器.  , 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [2] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件.  , 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [3] 高金玮, 陈璐, 李旭洪, 史俊勤, 曹腾飞, 范晓丽. 具有磁弹耦合的本征多铁半导体: 单分子层MoTeX (X = F, Cl, Br, I).  , 2024, 73(19): 197501. doi: 10.7498/aps.73.20240829
    [4] 姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性.  , 2018, 67(17): 174702. doi: 10.7498/aps.67.20180478
    [5] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理.  , 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [6] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构.  , 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [7] 王颜, 杨玖, 王丽丹, 段书凯. 基于串并联磁控忆阻器的耦合行为研究.  , 2015, 64(23): 237303. doi: 10.7498/aps.64.237303
    [8] 洪庆辉, 曾以成, 李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真.  , 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
    [9] 章鹏, 刘琳, 陈伟民. 磁性应力监测中力磁耦合特征及关键影响因素分析.  , 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [10] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性.  , 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [11] 郭展, 范飞, 白晋军, 牛超, 常胜江. 基于磁光子晶体的磁控可调谐太赫兹滤波器和开关.  , 2011, 60(7): 074218. doi: 10.7498/aps.60.074218
    [12] 毕海星, 周云松, 赵丽明, 王福合. 光子晶体中的磁控光子开关线路.  , 2008, 57(9): 5718-5721. doi: 10.7498/aps.57.5718
    [13] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性.  , 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [14] 沈自才, 邵建达, 王英剑, 范正修. 磁控反应溅射法制备渐变折射率薄膜的模型分析.  , 2005, 54(10): 4842-4845. doi: 10.7498/aps.54.4842
    [15] 崔玉亭, 陈京兰, 刘国栋, 吴光恒, 廖克俊, 王万录. Ni50.5Mn24.5G25单晶的预马氏体相变特性.  , 2005, 54(1): 263-268. doi: 10.7498/aps.54.263
    [16] 冯 倩, 黄志高, 都有为. 磁性多层膜磁特性的表面效应.  , 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
    [17] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
    [18] 邵元智, 林光明, 蓝图, 钟伟荣. 基于交换耦合模型纳米双相(硬磁/软磁)自旋体系的磁性.  , 2002, 51(10): 2362-2368. doi: 10.7498/aps.51.2362
    [19] 张鹏翔, 曹克定. 静磁波法研究材料的磁性.  , 1985, 34(11): 1407-1412. doi: 10.7498/aps.34.1407
    [20] 李荫远, 冷忠昂, 潘守甫. 磁声参量振荡的理论.  , 1960, 16(8): 448-461. doi: 10.7498/aps.16.448
计量
  • 文章访问数:  4548
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-01-01
  • 上网日期:  2024-01-16
  • 刊出日期:  2024-03-05

/

返回文章
返回
Baidu
map