搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交联聚乙烯电缆绝缘材料中电树枝的导电特性研究

陈向荣 徐阳 刘英 曹晓珑

引用本文:
Citation:

交联聚乙烯电缆绝缘材料中电树枝的导电特性研究

陈向荣, 徐阳, 刘英, 曹晓珑

Study on conducting characteristics of electrical trees in cross-linked polyethylene cable insulation

Chen Xiang-Rong, Xu Yang, Liu Ying, Cao Xiao-Long
PDF
导出引用
  • 利用光学显微观察、局部放电测量和共聚焦Raman光谱分析相结合的方法, 研究了交联聚乙烯(XLPE)电缆绝缘材料中两种典型电树枝的导电特性.尽管具有相似的培养条件, 两种电树枝却呈现出完全不同的形态,其中9 kV下典型电树枝为枝-松枝状, 11 kV下为枝状, 而且电树枝生长及局部放电规律呈现出明显的差异.枝-松枝状电树枝主干通道内存在无序石墨碳的沉积, 根据石墨碳G带与D带的相对强度,估算碳层厚度约为8 nm,树枝通道单位长度电阻小于 10 m-1,足以抑制电树枝内局部放电的发展,电树枝呈现出导电型电树枝特征. 枝状电树枝通道内观察到荧光背景,存在材料劣化的产物,但不存在无序石墨碳的聚集, 通道具有明显的非导电特性而不足以抑制电树枝内局部放电的连续作用. 最后提出了XLPE电缆绝缘材料中导电型和非导电型电树枝的单通道生长模型, 利用等效电路理论对XLPE电缆绝缘材料中两种不同导电特性电树枝的生长机理进行了探讨.
    The conducting characteristics of two typical electrical trees in cross-linked polyethylene (XLPE) cable insulation are studied by a combination of optical microscopy observation, partial discharge measurement and con-focal Raman spectroscopy analysis. Although they are grown under similar conditions, these two trees display very different shapes. One is a typical branch-pine tree grown at 9 kV, and the other is a branch tree grown at 11 kV. The growth and the partial discharge regularities show obvious differences. The disordered graphitic carbon is condensed in the main tree channels of the branch-pine tree. From the relative intensity of the graphitic carbon G band to D band, the graphitic domain is estimated to be about 8 nm in size. The tree channel resistance per unit length is less than 10 m-1, which is sufficient to prevent the partial discharge from developing within the tree structure. The branch-pine tree shows the features of the conducting tree. The fluorescence background is observed in the channels of branch tree, which shows the existence of the products of the material degradation, but no disordered graphitic carbon is observed in these tree channels. These tree channels display obvious non-conducting characteristics, which is not sufficient to prevent the continuous effect of the partial discharges. Finally, a single channel growth model is proposed for the conducting and non-conducting trees grown in XLPE cable insulation. Based on the equivalent circuit theory, the growth mechanisms of the two trees with different conducting characteristics in XLPE cable insulation are discussed.
    • 基金项目: 国家自然科学基金(批准号: 50877057)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50877057).
    [1]

    Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: Peter Peregrinus)

    [2]

    Li S T, Zheng X Q 2006 Electrical Treeing in Polymer (Beijing: Mechanical Industry Press) (in Chinese) [李盛涛, 郑晓泉 2006 聚合物电树枝化 (北京:机械工业出版社)]

    [3]

    Ishibashi A, Kawai T, Nakagawa S, Muto H, Katakai S, Hirotsu K, Nakatsula T 1998 IEEE Trans. Dielec. Electr. Insul. 5 695

    [4]

    Markey L, Stevens G C 2003 J. Phys. D 36 2569

    [5]

    Boggs S, Densley J, Kuang J 1998 IEEE Trans. Power Delivery 13 310

    [6]

    Zheng X Q, Xie A S, Li S T 2007 Acta Phys. Sin. 56 5494 (in Chinese) [郑晓泉, 谢安生, 李盛涛 2007 56 5494]

    [7]

    Xie A S, Li S T, Zheng X Q 2008 Acta Phys. Sin. 57 3828 (in Chinese) [谢安生, 李盛涛, 郑晓泉 2008 57 3828]

    [8]

    Chen G, Tham C H 2009 IEEE Trans. Dielec. Electr. Insul. 16 179

    [9]

    Zheng X Q, Chen G 2008 IEEE Trans. Dielec. Electr. Insul. 15 800

    [10]

    Chen X R, Xu Y, Xu J, Shi W, Yang W H, Liu Y, Cao X L 2010 High Voltage Eng. 36 2436 (in Chinese) [陈向荣, 徐阳, 徐杰, 史文, 杨文虎, 刘英, 曹晓珑 2010 高电压技术 36 2436]

    [11]

    Champion J V, Dodd S J 2001 J. Phys. D 34 1235

    [12]

    Vaughan A S, Dodd S J, Macdonald A M 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Nashville: IEEE) p548

    [13]

    Vaughan A S, Hosier I L, Dodd S J, Sutton S J 2006 J. Phys. D 39 962

    [14]

    Zheng X Q, Chen G, Davies A E 2004 Proc. Chin. Soc. Electr. Eng. 24 140 (in Chinese) [郑晓泉, Chen G, Davies A E 2004 中国电机工程学报 24 140]

    [15]

    Chen X R, Xu Y, Cao X L, Dodd S J, Dissado L A 2011 IEEE Trans. Dielec. Electr. Insul. \textbf1{8 847

    [16]

    Ding H Z, Varlow B R 2004 IEEE Electr. Insul. Mag. 20 5

    [17]

    Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S, Endo M 1999 Phys. Rev. B 59 R6585

    [18]

    Fothergill J C 1991 IEEE Trans. Electr. Insul. 26 1124

    [19]

    Dissado L A 2002 IEEE Trans. Dielec. Electr. Insul. 9 483

    [20]

    Wu K, Suzuoki Y, Mizutani T, Xie H K 2000 J. Phys. D 33 1209

    [21]

    Qiu C R, Cao X L 2001 Electrical Insulation Test Technology (Beijing: Mechanical Industry Press) (in Chinese) [邱昌容, 曹晓珑 2001 电气绝缘测试技术 (北京:机械工业出版社)]

    [22]

    Champion J V, Dodd S J, Stevens G C 1994 J. Phys. D 27 1020

  • [1]

    Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: Peter Peregrinus)

    [2]

    Li S T, Zheng X Q 2006 Electrical Treeing in Polymer (Beijing: Mechanical Industry Press) (in Chinese) [李盛涛, 郑晓泉 2006 聚合物电树枝化 (北京:机械工业出版社)]

    [3]

    Ishibashi A, Kawai T, Nakagawa S, Muto H, Katakai S, Hirotsu K, Nakatsula T 1998 IEEE Trans. Dielec. Electr. Insul. 5 695

    [4]

    Markey L, Stevens G C 2003 J. Phys. D 36 2569

    [5]

    Boggs S, Densley J, Kuang J 1998 IEEE Trans. Power Delivery 13 310

    [6]

    Zheng X Q, Xie A S, Li S T 2007 Acta Phys. Sin. 56 5494 (in Chinese) [郑晓泉, 谢安生, 李盛涛 2007 56 5494]

    [7]

    Xie A S, Li S T, Zheng X Q 2008 Acta Phys. Sin. 57 3828 (in Chinese) [谢安生, 李盛涛, 郑晓泉 2008 57 3828]

    [8]

    Chen G, Tham C H 2009 IEEE Trans. Dielec. Electr. Insul. 16 179

    [9]

    Zheng X Q, Chen G 2008 IEEE Trans. Dielec. Electr. Insul. 15 800

    [10]

    Chen X R, Xu Y, Xu J, Shi W, Yang W H, Liu Y, Cao X L 2010 High Voltage Eng. 36 2436 (in Chinese) [陈向荣, 徐阳, 徐杰, 史文, 杨文虎, 刘英, 曹晓珑 2010 高电压技术 36 2436]

    [11]

    Champion J V, Dodd S J 2001 J. Phys. D 34 1235

    [12]

    Vaughan A S, Dodd S J, Macdonald A M 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Nashville: IEEE) p548

    [13]

    Vaughan A S, Hosier I L, Dodd S J, Sutton S J 2006 J. Phys. D 39 962

    [14]

    Zheng X Q, Chen G, Davies A E 2004 Proc. Chin. Soc. Electr. Eng. 24 140 (in Chinese) [郑晓泉, Chen G, Davies A E 2004 中国电机工程学报 24 140]

    [15]

    Chen X R, Xu Y, Cao X L, Dodd S J, Dissado L A 2011 IEEE Trans. Dielec. Electr. Insul. \textbf1{8 847

    [16]

    Ding H Z, Varlow B R 2004 IEEE Electr. Insul. Mag. 20 5

    [17]

    Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S, Endo M 1999 Phys. Rev. B 59 R6585

    [18]

    Fothergill J C 1991 IEEE Trans. Electr. Insul. 26 1124

    [19]

    Dissado L A 2002 IEEE Trans. Dielec. Electr. Insul. 9 483

    [20]

    Wu K, Suzuoki Y, Mizutani T, Xie H K 2000 J. Phys. D 33 1209

    [21]

    Qiu C R, Cao X L 2001 Electrical Insulation Test Technology (Beijing: Mechanical Industry Press) (in Chinese) [邱昌容, 曹晓珑 2001 电气绝缘测试技术 (北京:机械工业出版社)]

    [22]

    Champion J V, Dodd S J, Stevens G C 1994 J. Phys. D 27 1020

  • [1] 李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧. 电缆附件用硅橡胶力-热老化特性及电-热-力多物理场耦合仿真研究.  , 2024, 73(7): 070701. doi: 10.7498/aps.73.20231869
    [2] 李永军, 韩永森, 张文江琪, 郭文敏, 孙云龙, 李忠华. 辅助电场对低密度聚乙烯微观结构演变与直流电气特性的影响.  , 2024, 73(22): 227702. doi: 10.7498/aps.73.20241113
    [3] 王赫宇, 李忠磊, 杜伯学. 界面电子结构对核壳量子点/聚乙烯纳米复合绝缘电导与空间电荷特性的影响.  , 2024, 73(12): 127702. doi: 10.7498/aps.73.20232041
    [4] 王江琼, 李维康, 张文业, 万宝全, 查俊伟. 电缆绝缘材料交联聚乙烯的老化及寿命调控.  , 2024, 73(7): 078801. doi: 10.7498/aps.73.20240201
    [5] 聂永杰, 赵现平, 李盛涛. 聚乙烯陷阱特性对真空直流沿面闪络性能的影响.  , 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [6] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性.  , 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [7] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能.  , 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [8] 田淙升, 陈新亮, 刘杰铭, 张德坤, 魏长春, 赵颖, 张晓丹. 氢气引入对宽光谱Mg和Ga共掺杂ZnO透明导电薄膜的特性影响.  , 2014, 63(3): 036801. doi: 10.7498/aps.63.036801
    [9] 迟晓红, 高俊国, 郑杰, 张晓虹. 聚丙烯中电树枝生长机理研究.  , 2014, 63(17): 177701. doi: 10.7498/aps.63.177701
    [10] 李盛涛, 李国倡, 闵道敏, 赵妮. 入射电子能量对低密度聚乙烯深层充电特性的影响.  , 2013, 62(5): 059401. doi: 10.7498/aps.62.059401
    [11] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析.  , 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [12] 黄秀光, 傅思祖, 舒桦, 叶君建, 吴江, 谢志勇, 方智恒, 贾果, 罗平庆, 龙滔, 何钜华, 顾援, 王世绩. 聚乙烯冲击压缩特性实验研究.  , 2010, 59(9): 6394-6398. doi: 10.7498/aps.59.6394
    [13] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英. 聚集态和陷阱对交联聚乙烯真空沿面闪络特性的影响.  , 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [14] 谢安生, 李盛涛, 郑晓泉. 高频电压下交联聚乙烯电缆绝缘中电树枝生长的动力学模型.  , 2008, 57(6): 3828-3833. doi: 10.7498/aps.57.3828
    [15] 郑晓泉, 谢安生, 李盛涛. 发展在XLPE电缆绝缘内外侧的电树枝.  , 2007, 56(9): 5494-5501. doi: 10.7498/aps.56.5494
    [16] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究.  , 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] 王晓强, 谢二庆, 钱秉中, 贺德衍, 朱智勇, 金运范. 离子辐照对聚苯乙烯低温导电特性的影响.  , 2002, 51(5): 1094-1097. doi: 10.7498/aps.51.1094
    [18] 王恭明, 钱士雄, 徐建华, 王文军, 刘秀, 陆兴泽, 李富铭. 聚乙烯咔唑/C60组合薄膜光诱导电荷转移性质研究.  , 2000, 49(3): 544-547. doi: 10.7498/aps.49.544
    [19] 张兴元, 古川猛夫. 偏氟乙烯/三氟乙烯铁电共聚物的非晶介电弛豫.  , 1993, 42(8): 1370-1374. doi: 10.7498/aps.42.1370
    [20] 李铁城, 许政一. α-LiIO3的导电和介电特性的理论分析.  , 1977, 26(6): 500-508. doi: 10.7498/aps.26.500
计量
  • 文章访问数:  8761
  • PDF下载量:  1541
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-14
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回
Baidu
map