-
对由两个相同的长直链分子(CH3(CH2)5–R(R=COOH,CH3,OH)、CH3(CH2)4–COOH))呈镜面对称分布组成的四种模型,及由两个CH3(CH2 )5COOH分子平行分布组成的模型进行了量化计算,研究了分子间距、功能团、链长及排列方式对原子电荷分布及分子静电相互作用的影响. 结果表明:1) 分子中不同位置的亚甲基团(–CH2–)的C原子电荷各不相同. 2) 原子电荷不仅受到分子链长及功能团的影响,同时,当分子间距及排列方式发生改变时,原子电荷也发生改变;双分子模型较单分子模型的原子电荷变化较大. 3) 分子间静电作用由尾基功能团的极性决定,由强到弱为–COOH>–OH>–CH3,分子中其他原子对静电作用的贡献较小;分子链长的增加导致尾基功能团中电荷减少,从而使得分子间静电作用减弱.The quantum computation method has been used to investigate the atomic charge and electrostatic interaction of five models: four of which are composed of two mirror-symmetrical long-chain organic molecules (CH3 (CH2)5–R (R=COOH, CH3, OH) and CH3(CH2)4COOH); and one is composed of two parallel CH3 (CH2)5 COOH molecules. Results show that: (1)The charge of the C atoms of the methylenes(–CH2–) in the molecules is different from each other; (2) the atomic charge is mainly determined by the chain-length and the functional group; meanwhile, it may change when the distance between molecules changes or the arrangement of the molecules changes. The atomic charge in the bimolecular models changes more than in the single molecule models; (3)the electrostatic interaction is mainly determined by the tail function groups: the interaction strength is –COOH>–OH>–CH3; while the other atoms have little contribution. Electrostatic interaction will decrease when the atomic charge of the tail functional groups decreases, which is caused by the increased chain-length.
[1] Zhang Zh H, Li H P, Han K 2013 Acta Phys. Sin. 62 158701(in Chinese) [张兆慧, 李海鹏, 韩奎 2013 62 158701]
[2] Michelle M F, Christina C, LISA E C, David M G 1996 J. Comp. Chem. 17 367
[3] Tajkhorshid E, Sandor S 1999 J. Phys. Chem. B 103 5581
[4] Lee J G, Jeong H Y, Lee H 2003 Bull. Korean. Chem. Soc. 24 369
[5] Brian R W, Carston R W, Donald G T, Elizabeth A A 2008 J. Chem. Theory Comput. 4 1718
[6] Oleg B, Grant D S, Thomas D S, Dmitry B 2008 J. Phys. Chem. B 112 7340742
[7] Tu Y Q, Laaksonenes A 2001 Phys. Rev. E 64 026703
[8] Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 , Chin. Phys. B 17 2938
[9] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A,, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, and Pople J A 2003 Gaussian 03, Revision B 03, Gaussian, Inc, Pittsburgh PA,
[10] Lu T, Chen F W 2012 Acta Phys.-Chim. Sin. 28 1(in Chinese) [卢天, 陈飞武 2012 物理化学学报 28 1]
[11] Martin F, Zipse H 2005 J. Comp. Chem. 26 97
[12] Tang C M, Chen X, Deng K M, Hu F L, Huang D C, Xia H Y 2009 Acta Phys. Sin. 58 2675(in Chinese) [唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕 2009 58 2675]
[13] Zhang L Z, Jiang S Y 2003 J. Chem. Phys. 119 765
[14] Byeongwon P, Michael C, Mark J S, Gary S G 2003 Langmuir 19 9239
[15] Zhang L Z, Leng Y S, Jiang S Y 2003 Langmuir 19 9742
-
[1] Zhang Zh H, Li H P, Han K 2013 Acta Phys. Sin. 62 158701(in Chinese) [张兆慧, 李海鹏, 韩奎 2013 62 158701]
[2] Michelle M F, Christina C, LISA E C, David M G 1996 J. Comp. Chem. 17 367
[3] Tajkhorshid E, Sandor S 1999 J. Phys. Chem. B 103 5581
[4] Lee J G, Jeong H Y, Lee H 2003 Bull. Korean. Chem. Soc. 24 369
[5] Brian R W, Carston R W, Donald G T, Elizabeth A A 2008 J. Chem. Theory Comput. 4 1718
[6] Oleg B, Grant D S, Thomas D S, Dmitry B 2008 J. Phys. Chem. B 112 7340742
[7] Tu Y Q, Laaksonenes A 2001 Phys. Rev. E 64 026703
[8] Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 , Chin. Phys. B 17 2938
[9] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A,, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, and Pople J A 2003 Gaussian 03, Revision B 03, Gaussian, Inc, Pittsburgh PA,
[10] Lu T, Chen F W 2012 Acta Phys.-Chim. Sin. 28 1(in Chinese) [卢天, 陈飞武 2012 物理化学学报 28 1]
[11] Martin F, Zipse H 2005 J. Comp. Chem. 26 97
[12] Tang C M, Chen X, Deng K M, Hu F L, Huang D C, Xia H Y 2009 Acta Phys. Sin. 58 2675(in Chinese) [唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕 2009 58 2675]
[13] Zhang L Z, Jiang S Y 2003 J. Chem. Phys. 119 765
[14] Byeongwon P, Michael C, Mark J S, Gary S G 2003 Langmuir 19 9239
[15] Zhang L Z, Leng Y S, Jiang S Y 2003 Langmuir 19 9742
计量
- 文章访问数: 6364
- PDF下载量: 338
- 被引次数: 0