搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元混合物在液体层上发生马兰戈尼爆裂的研究

谢科薇 陶金成 董裕力 翁雨燕 杨俊义 方亮

引用本文:
Citation:

二元混合物在液体层上发生马兰戈尼爆裂的研究

谢科薇, 陶金成, 董裕力, 翁雨燕, 杨俊义, 方亮

Study on Marangoni explosion of binary mixtures in liquid layer

Xie Ke-Wei, Tao Jin-Cheng, Dong Yu-Li, Weng Yu-Yan, Yang Jun-Yi, Fang Liang
PDF
HTML
导出引用
  • 由于马兰戈尼效应, 液滴在液体层表面自发铺展成薄膜的物理过程, 在成膜技术、涂层工艺、以及纳米器件的制作等领域具有广泛的应用, 但是铺展后液膜自发碎裂成小液滴的现象也被广泛观察到, 这种现象限制了马兰戈尼效应应用的发展. 本文基于以往的实验观察对液膜的碎裂机制进行完备的解释, 并通过实验进行验证, 指出了液滴薄膜中心与边缘蒸发速率的差异引起的马兰戈尼流动对液膜边界产生的微扰, 使得液滴铺展到最大时边缘生长出指状液柱. 此外, 根据微扰模型推导出边界失稳的临界波长和最大波长的表达式, 基于Plateau-Rayleigh不稳定性解释了指状液柱碎裂的原因. 建立同心圆柱壳液柱模型简化计算, 预测了不同黏度比的液滴在液体层上铺展为薄膜的浓度范围和发生马兰戈尼爆裂的位置区间, 并通过实验验证了不同醇溶液发生马兰戈尼爆裂的浓度范围和位置区间. 该理论解释将在成膜技术、涂层工艺等领域提供更加精细的理论指导; 特别地, 本文提出的同心圆柱壳简化模型为化工领域微量反应和纳米颗粒制备等研究领域中的一些技术难题提供新的解决思路.
    In this work, the process of forming micro-droplets due to instability and fragmentation after short chain alcohol solution spreads on the surface of oil layers is studied. Based on the free energy theory of the liquid-liquid interface, the relationship between the binary mixtures spreading on the surface of the liquid layer is derived, and the concentration range of short chain alcohol solution spreading as a thin film on the surface of the oil layer is calculated from the Hiskovsky formula. The Malangoni flow caused by the difference in evaporation rate between the center and edge of the droplet film perturbs the boundary of the liquid film, causing finger-shaped liquid columns to grow at the edge when the droplet spreads to its maximum. In this work, the expression for the critical wavelength and maximum wavelength of boundary instability are derived based on the perturbation model, and the reason for finger shaped liquid column fragmentation is explained based on the Plateau Rayleigh instability. A concentric cylindrical shell liquid column model is established to simplify the calculation and predict the location range of “droplet explosion” of droplets with different viscosity ratios on the liquid layer. Through theoretical calculations and experimental verification, it is found that the alcohol solution fragmented into small droplets within a length range of 4.51–5.98 times the width of the liquid column. This study provides theoretical guidance for existing application fields such as film forming technology and coating technology. The hypotheses, assumptions, and simplified models preliminarily verified experimentally provide solutions for some technical difficulties in the research fields of micro reactions and nanoparticle preparation in chemical industry.
    [1]

    Zhang J, Oron A, Behringer R P 2011 Phys. Fluids 23 072102Google Scholar

    [2]

    赵子强, 韦伦存, 王浩, 张金宏, 钟运成, 卢希庭 1997 46 878Google Scholar

    Zhao Z Q, Wei L C, Wang H, Zhang J H, Zhong Y C, Lu X T 1997 Acta Phys. Sin. 46 878Google Scholar

    [3]

    马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英 2022 71 158101Google Scholar

    Ma S P, Lin F Y, Luo Y, Zhu L, Guo X Y, Yang Y 2022 Acta Phys. Sin. 71 158101Google Scholar

    [4]

    Fay J A 1969 Oil on the Sea (Boston: Springer) pp53–63

    [5]

    Huh C, Inoue M, Mason S G 1975 Can. J. Chem. Eng. 53 367Google Scholar

    [6]

    Foda M, Cox R G 1980 J. Fluid Mech. 101 33Google Scholar

    [7]

    Chaudhary K C, Redeopp L G 1980 Theory. J. Fluid Mech. 96 257Google Scholar

    [8]

    Chaudhary K C, Maxworthy T 1980 J. Fluid Mech. 96 275Google Scholar

    [9]

    Smith M K, Davis S H 1983 J. Fluid Mech. 132 119Google Scholar

    [10]

    Smith M K, Davis S H 1983 J. Fluid Mech. 132 145Google Scholar

    [11]

    Fanton X, Cazabat A M 1998 Langmuir 14 2554Google Scholar

    [12]

    Dussaud A D, Trojan S T 1998 Phys. Fluids 10 23Google Scholar

    [13]

    Borgas M S, Grotberg J B 1988 J. Fluid Mech. 188 151Google Scholar

    [14]

    Santiago Rosanne M, Vignes Adler M, Velarde M G 1997 J. Colloid. Interface Sci. 191 651Google Scholar

    [15]

    Vuilleumier R, Ego V, Neltner L, Cazabat A M 1995 Langmuir 11 4117Google Scholar

    [16]

    Kataoka D E, Troian S M 1997 J. Colloid. Nterf. Sci. 192 350Google Scholar

    [17]

    Jensen O E 1995 J. Fluid Mech. 293 349Google Scholar

    [18]

    Berg S 2009 Phys. Fluids 21 032105Google Scholar

    [19]

    Yamamoto D, Nakajima C, Shioi A, Krafft M P, Yoshikawa K 2015 Nat. Commun. 6 7189Google Scholar

    [20]

    Eggers J, Villermaux E 2008 Rep. Prog. Phys. 71 036601Google Scholar

    [21]

    Keiser L, Bense H, Colinet P, Bico J, Reyssat E 2017 Phys. Rev. Lett. 118 074504Google Scholar

    [22]

    Hamraoui A, Cachile M, Poulard C, Cazabat A M 2004 Colloid Surf. A Physicochem. Eng. Asp. 250 215Google Scholar

    [23]

    Hernández-Sánchez J F, Eddi A, Snoeijer J H 2015 Phys. Fluids 27 032003Google Scholar

    [24]

    赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人 2021 70 184701Google Scholar

    Zhao W J, Wang J, Qin W G, Ji W J, Lan D, Wang Y R 2021 Acta Phys. Sin. 70 184701Google Scholar

    [25]

    Wodlei F, Sebilleau J, Magnaudet J, Pimienta1 V 2018 Nat. Commun. 9 820Google Scholar

    [26]

    Dipietro N D, Huh C, Cox R G 1978 J. Fluid Mech. 84 529Google Scholar

    [27]

    Girifalco L A 2000 J. Phys. Chem. B. 104 2599Google Scholar

    [28]

    Zhao G J, Pumera M 2012 J. Phys. Chem. B 116 10960Google Scholar

    [29]

    杨宇平, 王农 2010 广东化工 37 180Google Scholar

    Yang Y P, Wang N 2010 Guangdong Huagong 37 180Google Scholar

    [30]

    Pin C, Souad H, Safouene O, Jesse S 2017 J. Phys. Chem. B 121 5824Google Scholar

    [31]

    Kim H, Boulogne F, Um E, Jacobi I, Button E, Stone H A 2016 Phys. Rev. Lett. 116 124501Google Scholar

    [32]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford University, New York/London) pp11–12

    [33]

    Troian S M, Wu X L, Safran S A 1989 Phys. Rev. Lett. 62 1496Google Scholar

    [34]

    Afsar-Siddiqui A B, Luckham P F, Matar O K 2003 Langmuir 19 703Google Scholar

    [35]

    Hamraoui A, Cachile M, Poulard M, Cazabat A 2004 Colloid Surf. A 250 215Google Scholar

    [36]

    Sultan E, Boudaoud A, Ben Amar M 2005 J. Fluid Mech. 543 183Google Scholar

    [37]

    Gotkis Y, Ivanov I, Murisic N, Kondic L 2006 Phys. Rev. Lett. 97 186101Google Scholar

    [38]

    Bates C M, Stevens F, Langford S C, Dickinson J T 2008 Langmuir 24 7193Google Scholar

    [39]

    Plateau J A F 1873 Statique Expérimentale et Théorique des Liquides Soumis Aux Seules Forces Moléculaires(Vol. 2)(Paris: Gauthier-Villars) pp119–121

    [40]

    Drazin P G, Reid W H 2004 Hydrodynamic Stability (2nd Ed.) (Cambridge: Cambridge University Press) pp432–433

    [41]

    Liang X, Deng D S, Nave J C, Johnson, Steven G 2011 Phys. Fluids. 683 235Google Scholar

    [42]

    Demmel J W, Kagstrom B 1987 Linear Algebr. Appl. 88gebr 139Google Scholar

    [43]

    Tomotika S 1935 Proc. R. Soc. Lond. (A) 150 322Google Scholar

    [44]

    Chauhan A, Maldarelli C, Papageorgiou D T, Rumschitzki D S 2000 J. Fluid Mech. 420 120Google Scholar

    [45]

    Rayleigh L 1879 Proc. R. Soc. Lond. 29 71Google Scholar

    [46]

    Rayleigh L 1892 Phil. Mag. 34 145Google Scholar

    [47]

    Eggers J 1993 Phys. Rev. Lett 71 3458Google Scholar

    [48]

    郝子洋, 杜凤沛 2008 大学化学 23 34Google Scholar

    Hao Z Y, Du F P 2008 Univ. Chem. 23 34Google Scholar

    [49]

    甘泉, 杜源, 雷航, 阎晓琦 2016 大学化学 31 97Google Scholar

    Gan Q, Du Y, Lei H, Yan X Q 2016 Univ. Chem. 31 97Google Scholar

    [50]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [51]

    王子昂, 郭航, 荣欣, 董桂芳 2019 物理化学学报 35 1259Google Scholar

    Wang Z A, Guo H, Rong X, Dong G F 2019 Acta Phys. Chim. Sin. 35 1259Google Scholar

    [52]

    刘丹丹 2015 硕士学位论文 (杭州: 浙江大学)

    Liu D D 2015 M. S. Thesis (Hangzhou: Zhejiang University

  • 图 1  液滴边界的形状

    Fig. 1.  Shape of droplet boundary.

    图 2  指状液柱碎裂过程的实验图像

    Fig. 2.  Experimental images of finger shaped liquid column fragmentation process.

    图 3  同心圆柱壳模型示意图

    Fig. 3.  Schematic diagram of a concentric cylindrical shell model.

    图 4  振动模式示意图 (a) $ {\sigma }^{+}\left(k\right) $模式; (b) $ {\sigma }^{-}\left(k\right) $模式

    Fig. 4.  Schematic diagram of vibration mode: (a) $ {\sigma }^{+}\left(k\right) $ mode; (b) $ {\sigma }^{-}\left(k\right) $ mode.

    图 5  (a) $ {\sigma }^{+}\left(k\right) $模式下增长率与波数和黏度比的关系; (b) 黏度比和最大增长率所对应的波数的关系

    Fig. 5.  (a) Relation of growth rate to wavenumber and viscosity ratio at $ {\sigma }^{+}\left(k\right) $ mode; (b) relationship between the viscosity ratio and the wave number corresponding to the maximum growth rate.

    图 6  $ {\sigma }^{-}\left(k\right) $模式下增长率与波数的关系

    Fig. 6.  Relation of growth rate to wavenumber and viscosity ratio at $ {\sigma }^{-}\left(k\right) $ mode.

    图 7  不同黏度比下两种模式最大增长率对应的波数的区间

    Fig. 7.  Interval of the wavenumber corresponding to the maximum growth rate of the two modes at different viscosity ratios.

    图 8  不同醇溶液是否发生爆裂现象的体积分数统计数据

    Fig. 8.  Statistical data on volume fractions of several alcohol solutions for whether bursting phenomena occur.

    图 9  花生油, 蓖麻油为液体B时, 乙醇溶液是否发生爆裂现象的体积分数统计数据

    Fig. 9.  Statistical data of volume fraction of ethanol solution with peanut oil and castor oil as liquid B.

    图 10  液柱碎裂位置L/d数据点

    Fig. 10.  Liquid column fragmentation location L/d data point.

    表 2  花生油, 蓖麻油为液体B时, 乙醇溶液发生爆裂现象的理论浓度范围与实验浓度范围

    Table 2.  Theoretical concentration range and experimental concentration range of ethanol solution when peanut oil and castor oil are liquid layers B.

    液体层(厚度均为4 mm)花生油蓖麻油
    表面张力/(N·m–1)0.033020.03550
    C的计算值/(mol·L–1)(7.38, 17.039)(5.925, 17.039)
    C的实验值/(mol·L–1)(7.67, 17.039)(6.305, 17.039)
    绝对误差0.290.38
    相对误差0.0390.064
    下载: 导出CSV

    表 1  不同醇溶液发生爆裂现象的理论浓度范围与实验浓度范围

    Table 1.  Theoretical concentration range and experimental concentration range of burst phenomena in several alcohol solutions.

    二元混合物 乙醇 正丙醇 异丙醇 正丁醇
    K 0.52241 0.19622 0.11931 0.07004
    b 0.20449 0.22024 0.16302 0.23663
    相关系数 0.99757 0.99980 0.99908 0.99620
    C的计算值/(mol·L–1) (7.381, 7.039) (2.248, 13.37) (3.484, 13.06) (0.6627, 4.7237)
    C的实验值/(mol·L–1) (7.67, 17.039) (2.542, 13.37) (3.92, 13.06) (0.87, 4.37)
    绝对误差 0.29 0.294 0.436 0.2073/–0.3537
    相对误差 0.039 0.130 0.125 0.3128/–0.081
    下载: 导出CSV
    Baidu
  • [1]

    Zhang J, Oron A, Behringer R P 2011 Phys. Fluids 23 072102Google Scholar

    [2]

    赵子强, 韦伦存, 王浩, 张金宏, 钟运成, 卢希庭 1997 46 878Google Scholar

    Zhao Z Q, Wei L C, Wang H, Zhang J H, Zhong Y C, Lu X T 1997 Acta Phys. Sin. 46 878Google Scholar

    [3]

    马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英 2022 71 158101Google Scholar

    Ma S P, Lin F Y, Luo Y, Zhu L, Guo X Y, Yang Y 2022 Acta Phys. Sin. 71 158101Google Scholar

    [4]

    Fay J A 1969 Oil on the Sea (Boston: Springer) pp53–63

    [5]

    Huh C, Inoue M, Mason S G 1975 Can. J. Chem. Eng. 53 367Google Scholar

    [6]

    Foda M, Cox R G 1980 J. Fluid Mech. 101 33Google Scholar

    [7]

    Chaudhary K C, Redeopp L G 1980 Theory. J. Fluid Mech. 96 257Google Scholar

    [8]

    Chaudhary K C, Maxworthy T 1980 J. Fluid Mech. 96 275Google Scholar

    [9]

    Smith M K, Davis S H 1983 J. Fluid Mech. 132 119Google Scholar

    [10]

    Smith M K, Davis S H 1983 J. Fluid Mech. 132 145Google Scholar

    [11]

    Fanton X, Cazabat A M 1998 Langmuir 14 2554Google Scholar

    [12]

    Dussaud A D, Trojan S T 1998 Phys. Fluids 10 23Google Scholar

    [13]

    Borgas M S, Grotberg J B 1988 J. Fluid Mech. 188 151Google Scholar

    [14]

    Santiago Rosanne M, Vignes Adler M, Velarde M G 1997 J. Colloid. Interface Sci. 191 651Google Scholar

    [15]

    Vuilleumier R, Ego V, Neltner L, Cazabat A M 1995 Langmuir 11 4117Google Scholar

    [16]

    Kataoka D E, Troian S M 1997 J. Colloid. Nterf. Sci. 192 350Google Scholar

    [17]

    Jensen O E 1995 J. Fluid Mech. 293 349Google Scholar

    [18]

    Berg S 2009 Phys. Fluids 21 032105Google Scholar

    [19]

    Yamamoto D, Nakajima C, Shioi A, Krafft M P, Yoshikawa K 2015 Nat. Commun. 6 7189Google Scholar

    [20]

    Eggers J, Villermaux E 2008 Rep. Prog. Phys. 71 036601Google Scholar

    [21]

    Keiser L, Bense H, Colinet P, Bico J, Reyssat E 2017 Phys. Rev. Lett. 118 074504Google Scholar

    [22]

    Hamraoui A, Cachile M, Poulard C, Cazabat A M 2004 Colloid Surf. A Physicochem. Eng. Asp. 250 215Google Scholar

    [23]

    Hernández-Sánchez J F, Eddi A, Snoeijer J H 2015 Phys. Fluids 27 032003Google Scholar

    [24]

    赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人 2021 70 184701Google Scholar

    Zhao W J, Wang J, Qin W G, Ji W J, Lan D, Wang Y R 2021 Acta Phys. Sin. 70 184701Google Scholar

    [25]

    Wodlei F, Sebilleau J, Magnaudet J, Pimienta1 V 2018 Nat. Commun. 9 820Google Scholar

    [26]

    Dipietro N D, Huh C, Cox R G 1978 J. Fluid Mech. 84 529Google Scholar

    [27]

    Girifalco L A 2000 J. Phys. Chem. B. 104 2599Google Scholar

    [28]

    Zhao G J, Pumera M 2012 J. Phys. Chem. B 116 10960Google Scholar

    [29]

    杨宇平, 王农 2010 广东化工 37 180Google Scholar

    Yang Y P, Wang N 2010 Guangdong Huagong 37 180Google Scholar

    [30]

    Pin C, Souad H, Safouene O, Jesse S 2017 J. Phys. Chem. B 121 5824Google Scholar

    [31]

    Kim H, Boulogne F, Um E, Jacobi I, Button E, Stone H A 2016 Phys. Rev. Lett. 116 124501Google Scholar

    [32]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford University, New York/London) pp11–12

    [33]

    Troian S M, Wu X L, Safran S A 1989 Phys. Rev. Lett. 62 1496Google Scholar

    [34]

    Afsar-Siddiqui A B, Luckham P F, Matar O K 2003 Langmuir 19 703Google Scholar

    [35]

    Hamraoui A, Cachile M, Poulard M, Cazabat A 2004 Colloid Surf. A 250 215Google Scholar

    [36]

    Sultan E, Boudaoud A, Ben Amar M 2005 J. Fluid Mech. 543 183Google Scholar

    [37]

    Gotkis Y, Ivanov I, Murisic N, Kondic L 2006 Phys. Rev. Lett. 97 186101Google Scholar

    [38]

    Bates C M, Stevens F, Langford S C, Dickinson J T 2008 Langmuir 24 7193Google Scholar

    [39]

    Plateau J A F 1873 Statique Expérimentale et Théorique des Liquides Soumis Aux Seules Forces Moléculaires(Vol. 2)(Paris: Gauthier-Villars) pp119–121

    [40]

    Drazin P G, Reid W H 2004 Hydrodynamic Stability (2nd Ed.) (Cambridge: Cambridge University Press) pp432–433

    [41]

    Liang X, Deng D S, Nave J C, Johnson, Steven G 2011 Phys. Fluids. 683 235Google Scholar

    [42]

    Demmel J W, Kagstrom B 1987 Linear Algebr. Appl. 88gebr 139Google Scholar

    [43]

    Tomotika S 1935 Proc. R. Soc. Lond. (A) 150 322Google Scholar

    [44]

    Chauhan A, Maldarelli C, Papageorgiou D T, Rumschitzki D S 2000 J. Fluid Mech. 420 120Google Scholar

    [45]

    Rayleigh L 1879 Proc. R. Soc. Lond. 29 71Google Scholar

    [46]

    Rayleigh L 1892 Phil. Mag. 34 145Google Scholar

    [47]

    Eggers J 1993 Phys. Rev. Lett 71 3458Google Scholar

    [48]

    郝子洋, 杜凤沛 2008 大学化学 23 34Google Scholar

    Hao Z Y, Du F P 2008 Univ. Chem. 23 34Google Scholar

    [49]

    甘泉, 杜源, 雷航, 阎晓琦 2016 大学化学 31 97Google Scholar

    Gan Q, Du Y, Lei H, Yan X Q 2016 Univ. Chem. 31 97Google Scholar

    [50]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [51]

    王子昂, 郭航, 荣欣, 董桂芳 2019 物理化学学报 35 1259Google Scholar

    Wang Z A, Guo H, Rong X, Dong G F 2019 Acta Phys. Chim. Sin. 35 1259Google Scholar

    [52]

    刘丹丹 2015 硕士学位论文 (杭州: 浙江大学)

    Liu D D 2015 M. S. Thesis (Hangzhou: Zhejiang University

  • [1] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用.  , 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [2] 孙伟, 吕冲, 雷柱, 仲佳勇. 磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究.  , 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [3] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响.  , 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [4] 袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇. 冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究.  , 2021, 70(20): 205203. doi: 10.7498/aps.70.20210653
    [5] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究.  , 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [6] 李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟.  , 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [7] 袁永腾, 王立峰, 涂绍勇, 吴俊峰, 曹柱荣, 詹夏宇, 叶文华, 刘慎业, 江少恩, 丁永坤, 缪文勇. 掺杂对CH样品Rayleigh-Taylor不稳定性增长的影响.  , 2014, 63(23): 235203. doi: 10.7498/aps.63.235203
    [8] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究.  , 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [9] 夏同军, 董永强, 曹义刚. 界面张力对Rayleigh-Taylor不稳定性的影响.  , 2013, 62(21): 214702. doi: 10.7498/aps.62.214702
    [10] 张月, 卓青青, 刘红侠, 马晓华, 郝跃. 功率MOSFET的负偏置温度不稳定性效应中的平衡现象.  , 2013, 62(16): 167305. doi: 10.7498/aps.62.167305
    [11] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究.  , 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [12] 曹建民, 贺威, 黄思文, 张旭琳. pMOS器件直流应力负偏置温度不稳定性效应随器件基本参数变化的分析.  , 2012, 61(21): 217305. doi: 10.7498/aps.61.217305
    [13] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究.  , 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [14] 李文飞, 张丰收. 非对称核物质的化学不稳定性与力学不稳定性.  , 2001, 50(10): 1888-1895. doi: 10.7498/aps.50.1888
    [15] 李文飞, 张丰收, 陈列文. 化学不稳定性和同位素分布的同位旋效应.  , 2001, 50(6): 1040-1045. doi: 10.7498/aps.50.1040
    [16] 顾永年. 小环径比锐边界等离子体的扭曲模不稳定性.  , 1984, 33(4): 554-560. doi: 10.7498/aps.33.554
    [17] 王心宜, 林磊. 向列相液晶电流体不稳定性——偏置电场效应.  , 1983, 32(12): 1565-1573. doi: 10.7498/aps.32.1565
    [18] 夏蒙棼, 周如玲. 逃逸电子不稳定性.  , 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
    [19] 柯孚久, 沈解伍, 徐民健. 用初-边值方法研究具有固定边界的等离子体Kink不稳定性.  , 1980, 29(10): 1263-1274. doi: 10.7498/aps.29.1263
    [20] 陆全康. 关于等离子体川流激发回旋不稳定性的尼奎斯特判据.  , 1979, 28(2): 160-172. doi: 10.7498/aps.28.160
计量
  • 文章访问数:  1919
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2024-01-23
  • 上网日期:  2024-01-30
  • 刊出日期:  2024-04-05

/

返回文章
返回
Baidu
map