-
作为原子核的基本性质, 基态自旋一直是原子核数据与核结构基础研究领域的热点. 本文采用决策树方法对核素图上的奇质量数原子核(奇A核), 包括奇质子数原子核(奇Z核)与奇中子数原子核(奇N核), 进行了深入的研究, 并分别训练了奇Z核与奇N核的基态自旋预测模型. 其中在以75%∶25%的比例随机划分训练集与验证集的情况下, 奇Z核的训练集和验证集的正确率分别达到98.9%和79.3%; 奇N核的训练集和验证集的正确率分别达到98.6%和71.6%. 同时, 通过1000次随机选择训练集和验证集进行重复验证, 得到的正确率的标准误差均小于5%, 进一步验证了决策树的可靠性和泛化性能; 另一方面, 决策树的正确率远高于核结构研究中常用的理论模型, 如Skyrme-Hartree-Fock-Bogoliubov (SHFB)理论、协变密度泛函理论(CDFT)、 有限程液滴模型等. 接下来, 以所有自旋确定的奇Z核和奇N核为学习集, 对共计254和268个自旋未确定但有推荐值的奇Z核和奇N核的基态自旋值进行了预测, 预测集符合率分别达到68.5%和69.0%. 最后, 选择
$Z=59$ ,$Z=77$ ,$N=41$ 以及$N=59$ 四条奇质量数链, 讨论了决策树的学习(预测)结果与相应原子核的实验(推荐)值, 以及3种理论模型所给出结果的异同, 进一步展示了决策树在原子核基态自旋方面的研究与应用价值.Ground-state spin, as a fundamental parameter of nucleus, has consistently been a hot topic in research on nuclear data and structure. In this paper, we extensively investigate the odd-mass nuclei (odd-A nuclei) on the nuclide chart by using decision trees, including odd-proton nuclei (odd-Z nuclei) and odd-neutron nuclei (odd-N nuclei), and train ground-state spin prediction models of odd-Z nuclei and odd-N nuclei. In the case of randomly dividing the training set and validation set in a ratio of 75% to 25%, the accuracy rate of the training set and validation set for odd-Z nuclei reach 98.9% and 79.3%, respectively. The accuracy rate of the training set and validation set for the odd-N nuclei reach 98.6% and 71.6%, respectively. At the same time, by 1000 random selections of training set and validation set, after being validated repetitively, the standard error of the accuracy rate obtained can be less than 5%, further verifying the reliability and generalization performance of the decision tree. On the other hand, the accuracy rate of decision tree is much higher than those of theoretical models commonly used in nuclear structure research, such as Skyrme-Hartree-Fock-Bogoliubov, covariant density functional theory, and finite range droplet model. Next, by taking all spin-determined odd-Z nuclei and odd-N nuclei as a learning set, the ground-state spin values for 254 spin undetermined but recommended odd-Z nuclei and 268 spin undetermined but recommended odd-N nuclei are predicted, with the predicted set coincidence rates reaching 68.5% and 69.0%, respectively. Finally, four odd-mass number chains, i.e. Z = 59, Z =77, N = 41, and N = 59, are selected to compare the learning (prediction) results of the decision tree with the experimental (recommended) values of the corresponding nuclei, and to discuss the differences and similarities in the results given by the three theoretical models, thereby further demonstrating the research and application value of the decision tree in the ground-state spin of nuclei.-
Keywords:
- ground-state spin /
- odd-A nuclei /
- machine learning /
- decision tree
[1] Yordanov D T, Kowalska M, Blaum K, Rydt M D, Flanagan K T, Lievens P, Neugart R, Neyens G, Stroke H H 2007 Phys. Rev. Lett. 99 212501
Google Scholar
[2] Smirnova N, Bally B, Heyde K, Nowacki F, Sieja K 2010 Phys. Lett. B 686 109
Google Scholar
[3] baglin C M 2012 Nucl. Data Sheets 113 2187
Google Scholar
[4] Szuecs J, Johns M, Singh B 2004 Nucl. Data Sheets 102 1
Google Scholar
[5] Singh B 2009 Nucl. Data Sheets 110 1
Google Scholar
[6] Yang X F, Wang S J, Wilkins S G, Ruiz R F G 2023 Prog. Part. Nucl. Phys. 129 104005
Google Scholar
[7] Carlson J A, Gandolfi S, Pederiva F, Pieper S C, Schiavilla R, Schmidt K E, Wiringa R B 2015 Rev. Mod. Phys. 87 1067
Google Scholar
[8] Dickhoff W, Barbieri C 2004 Prog. Part. Nucl. Phys. 52 377
Google Scholar
[9] Hagen G, Papenbrock T, Hjorth-Jensen M, Dean D J 2014 Rep. Prog. Phys. 77 096302
Google Scholar
[10] Lee D 2009 Prog. Part. Nucl. Phys. 63 117
Google Scholar
[11] Caurier E, Martínez-Pinedo G, Nowacki F, Poves A, Zuker A P 2005 Rev. Mod. Phys. 77 427
Google Scholar
[12] Bender M, Heenen P H, Reinhard P G 2003 Rev. Mod. Phys. 75 121
Google Scholar
[13] Ring P 1996 Prog. Part. Nucl. Phys. 37 193
Google Scholar
[14] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470
Google Scholar
[15] Meng J 2016 Relativistic Density Functional for Nuclear Structure (Singapore: World Scientific) pp305–354
[16] Shen S, Liang H, Long W H, Meng J, Ring P 2019 Prog. Part. Nucl. Phys. 109 103713
Google Scholar
[17] Goriely S, Chamel N, Pearson J 2016 Phys. Rev. C 93 034337
Google Scholar
[18] Xia X, Lim Y, Zhao P, et al. 2018 At. Data Nucl. Data Tables 121 1
Google Scholar
[19] Möller P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1
Google Scholar
[20] Benediktsson J, Swain P, Ersoy O 1990 IEEE Trans. Geosci. Remote Sens. 28 540
Google Scholar
[21] Boehnlein A, Diefenthaler M, Sato N, Schram M, Ziegler V, Fanelli C, Hjorth-Jensen M, Horn T, Kuchera M P, Lee D, Nazarewicz W, Ostroumov P, Orginos K, Poon A, Wang X N, Scheinker A, Smith M S, Pang L G 2022 Rev. Mod. Phys. 94 031003
Google Scholar
[22] Wu X H 2023 Front. Phys. 11 1061042
Google Scholar
[23] Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303
Google Scholar
[24] Ming X C, Zhang H F, Xu R R, Sun X D, Tian Y, Ge Z G 2022 Nucl. Sci. Tech. 33 48
Google Scholar
[25] Shou R, Yin X, Ma C, Lin M, Zhao Y 2022 Phys. Rev. C 106 L061304
Google Scholar
[26] Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109
Google Scholar
[27] Neufcourt L, Cao Y, Giuliani S, Nazarewicz W, Olsen E, Tarasov O B 2020 Phys. Rev. C 101 014319
Google Scholar
[28] Neufcourt L, Cao Y, Nazarewicz W, et al. 2018 Phys. Rev. C 98 034318
Google Scholar
[29] Rodríguez U B, Vargas C Z, Gonçalves M, Duarte S B, Guzmán F 2019 J. Phys. G: Nucl. Part. Phys. 46 115109
Google Scholar
[30] Rodríguez U B, Vargas C Z, Gonçalves M, Duarte S B, Guzmán F 2019 Europhys. Lett. 127 42001
Google Scholar
[31] Utama R, Piekarewicz J, Prosper H 2016 Phys. Rev. C 93 014311
Google Scholar
[32] Bayram T, Akkoyun S, Kara S O 2014 Ann. Nucl. Energy 63 172
Google Scholar
[33] Gazula S, Clark J, Bohr H 1992 Nucl. Phys. A 540 1
Google Scholar
[34] Gernoth K, Clark J, Prater J, Bohr H 1993 Phys. Lett. B 300 1
Google Scholar
[35] Niu Z, Liang H 2018 Phys. Lett. B 778 48
Google Scholar
[36] Athanassopoulos S, Mavrommatis E, Gernoth K, Clark J W 2004 Nucl. Phys. A 743 222
Google Scholar
[37] Clark J W, Li H 2006 Int. J. Mod. Phys. B 20 5015
Google Scholar
[38] Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311
Google Scholar
[39] Dong X X, An R, Lu J X, Geng L S 2023 Phys. Lett. B 838 137726
Google Scholar
[40] Dong X X, An R, Lu J X, Geng L S 2022 Phys. Rev. C 105 014308
Google Scholar
[41] Ma J Q, Zhang Z H 2022 Chin. Phys. C 46 074105
Google Scholar
[42] Ma Y, Su C, Liu J, Ren Z, Xu C, Gao Y 2020 Phys. Rev. C 101 014304
Google Scholar
[43] Wu D, Bai C, Sagawa H, Zhang H 2020 Phys. Rev. C 102 054323
Google Scholar
[44] Utama R, Chen W C, Piekarewicz J 2016 J. Phys. G: Nucl. Part. Phys. 43 114002
Google Scholar
[45] Akkoyun S, Bayram T, Kara S O, Sinan A 2013 J. Phys. G: Nucl. Part. Phys. 40 055106
Google Scholar
[46] Yuan Z, Tian D, Li J, Niu Z 2021 Chin. Phys. C 45 124107
Google Scholar
[47] Clark J W, Gernoth K A, Dittmar S, Ristig M 1999 Phys. Rev. E 59 6161
Google Scholar
[48] Gernoth K A, Clark J W 1995 Neural Networks 8 291
Google Scholar
[49] Shang T S, Li J, Niu Z M 2022 Nucl. Sci. Tech. 33 153
Google Scholar
[50] Yang Z X, Fan X H, Naito T, Niu Z, Li Z P, Liang H 2022 arXiv: 2205.15649[nucl-th]
[51] Yang Z X, Fan X H, Yin P, Zuo W 2021 Phys. Lett. B 823 136650
Google Scholar
[52] Costiris N, Mavrommatis E, Gernoth K A, Clark J W 2009 Phys. Rev. C 80 044332
Google Scholar
[53] Wang Y, Zhang X, Niu Z, Li Z 2022 Phys. Lett. B 830 137154
Google Scholar
[54] Akkoyun S, Kaya H, Torun Y 2022 Indian J. Phys. 96 1791
Google Scholar
[55] Lasseri R D, Regnier D, Ebran J P, Penon A 2020 Phys. Rev. Lett. 124 162502
Google Scholar
[56] Akkoyun S, Laouet N, Benrachi F 2020 arXiv: 2001.08561[nucl-th]
[57] Ma N N, Zhao T L, Wang W X, Zhang H F 2023 Phys. Rev. C 107 014310
Google Scholar
[58] Li C Q, Tong C N, Du H J, Pang L G 2022 Phys. Rev. C 105 064306
Google Scholar
[59] Yuan Z, Bai D, Ren Z, Wang Z 2022 Chin. Phys. C 46 024101
Google Scholar
[60] Kwon M, Oh Y, Song Y H, et al. 2021 New Physics: Sae Mulli 71 599
Google Scholar
[61] Zhang X, Lin W, Yao J M, Jiao C F, Romero A M, Rodríguez T R, Hergert H 2023 Phys. Rev. C 107 024304
Google Scholar
[62] Munoz J M, Akkoyun S, Reyes Z P, Pachon L A 2023 Phys. Rev. C 107 034308
Google Scholar
[63] Niu Z, Liang H, Sun B, et al. 2019 Phys. Rev. C 99 064307
Google Scholar
[64] Costiris N, Mavrommatis E, Gernoth K, Clark J, Li H 2008 arXiv: 0809.0383[nucl-th]
[65] Akkoyun S, Amrani N, Bayram T 2023 Appl. Radiat. Isot. 191 110554
Google Scholar
[66] Huang T X, Wu X H, Zhao P W 2022 Commun. Theor. Phys. 74 095302
Google Scholar
[67] Ma C W, Wei X B, Chen X X, Peng D, Wang Y T, Pu J, Cheng K X, Guo Y F, Wei H L 2022 Chin. Phys. C 46 074104
Google Scholar
[68] Peng D, Wei H L, Chen X X, Wei X B, Wang Y T, Pu J, Cheng K X, Ma C W 2022 J. Phys. G: Nucl. Part. Phys. 49 085102
Google Scholar
[69] Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44 014104
Google Scholar
[70] Ma C W, Peng D, Wei H L, Wang Y T, Pu J 2020 Chin. Phys. C 44 124107
Google Scholar
[71] Ma C W, Wei H L, Liu X Q, Su J, Zheng H, Lin W P, Zhang Y X 2021 Prog. Part. Nucl. Phys. 121 103911
Google Scholar
[72] Yesilkanat C M, Akkoyun S 2023 J. Phys. G: Nucl. Part. Phys. 50 055101
Google Scholar
[73] Akkoyun S, Bayram T 2014 Int. J. Mod. Phys. E 23 1450064
Google Scholar
[74] Wang X, Zhu L, Su J 2021 Phys. Rev. C 104 034317
Google Scholar
[75] Wu D, Bai C, Sagawa H, Nishimura S, Zhang H 2021 Phys. Rev. C 104 054303
Google Scholar
[76] Wu X, Ren Z, Zhao P, et al. 2022 Phys. Rev. C 105 L031303
Google Scholar
[77] Alhassan E, Rochman D, Vasiliev A, Hursin M, Koning A J, Ferroukhi H 2022 Nucl. Sci. Tech. 33 50
Google Scholar
[78] Möller P, Nix J R 1990 Nucl. Phys. A 520 c369
Google Scholar
[79] Breiman L 2001 Mach. Learn. 45 5
Google Scholar
[80] Chen T, Guestrin C 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco, USA, August 13–17, 2016 p785
[81] Carnini M, Pastore A 2020 J. Phys. G: Nucl. Part. Phys. 47 082001
Google Scholar
[82] Maderna C, Soardi P M 1985 Lezioni di analisi matematica (Torino: Città Studi Edizioni) pp1–354
[83] Pedregosa F, Varoquaux G, Gramfort A, et al. 2011 J. Mach. Learn. Res. 12 2825
Google Scholar
[84] From ENSDF database as of 5.16, 2019. Version available at http://www.nndc.bnl.gov/ensarchivals/[2019-5-16]
[85] Wraith C, Yang X, Xie L, Babcock C, Bieroń J, Billowes J, Bissell M, Blaum K, Cheal B, Filippin L, Garcia Ruiz R, Gins W, Grob L, Gaigalas G, Godefroid M, Gorges C, Heylen H, Honma M, Jönsson P, Kaufmann S, Kowalska M, Krämer J, Malbrunot-Ettenauer S, Neugart R, Neyens G, Nörtershäuser W, Nowacki F, Otsuka T, Papuga J, Sánchez R, Tsunoda Y, Yordanov D 2017 Phys. Lett. B 771 385
Google Scholar
-
图 4 基于最大树深为11的决策树模型得到的原子核基态自旋学习集和预测集的结果, 其中与实验值相同(不同)的用红色实心(空心)圆圈表示; 与推荐值相同(不同)的用蓝色实心(空心)方块表示; 没有推荐值的用蓝色实心三角表示 (a)奇Z核; (b)奇N核
Fig. 4. Learning set and prediction set of the ground-state spin based on the decision tree model with the maximum depth of 11: (a) Odd-Z nuclei; (b) odd-N nuclei. The one same (different) as the experimental value is represented by a red solid (hollow) circle; the one same (different) as the recommended value is represented by blue solid (hollow) square; those with no recommended value are represented by blue solid triangles.
图 5 基于决策树得到的质子数
$ Z=59 $ 、$Z=77$ 的同位素链, 以及中子数$ N=41 $ 、$ N=59 $ 的同中异位素链原子核的基态自旋值, 并与SHFB、CDFT、FRDM预测结果和相应实验值、推荐值结果的比较Fig. 5. The ground-state spin of
$ Z=59 $ and$Z=77$ isotopic chains (left) and$ N=41 $ and$ N=59 $ isotonic chains (right) are obtained based on the decision tree, and compared with the predicted results of SHFB, CDFT, FRDM and the corresponding experimental and recommended values.表 1 最大树深为11时取1000次随机重复验证, 分别得到奇Z核和奇N核的训练集与验证集正确率平均值和正确率标准误差
Table 1. Average and standard error of the accuracy of the training set and the validation set obtained by 1000 random repetitions for odd-Z nuclei and odd-N nuclei, respectively
奇Z核 奇N核 训练集 验证集 训练集 验证集 平均值 97.6% 72.3% 96.5% 67.1% 标准误差 1.7% 4.5% 2.4% 4.9% -
[1] Yordanov D T, Kowalska M, Blaum K, Rydt M D, Flanagan K T, Lievens P, Neugart R, Neyens G, Stroke H H 2007 Phys. Rev. Lett. 99 212501
Google Scholar
[2] Smirnova N, Bally B, Heyde K, Nowacki F, Sieja K 2010 Phys. Lett. B 686 109
Google Scholar
[3] baglin C M 2012 Nucl. Data Sheets 113 2187
Google Scholar
[4] Szuecs J, Johns M, Singh B 2004 Nucl. Data Sheets 102 1
Google Scholar
[5] Singh B 2009 Nucl. Data Sheets 110 1
Google Scholar
[6] Yang X F, Wang S J, Wilkins S G, Ruiz R F G 2023 Prog. Part. Nucl. Phys. 129 104005
Google Scholar
[7] Carlson J A, Gandolfi S, Pederiva F, Pieper S C, Schiavilla R, Schmidt K E, Wiringa R B 2015 Rev. Mod. Phys. 87 1067
Google Scholar
[8] Dickhoff W, Barbieri C 2004 Prog. Part. Nucl. Phys. 52 377
Google Scholar
[9] Hagen G, Papenbrock T, Hjorth-Jensen M, Dean D J 2014 Rep. Prog. Phys. 77 096302
Google Scholar
[10] Lee D 2009 Prog. Part. Nucl. Phys. 63 117
Google Scholar
[11] Caurier E, Martínez-Pinedo G, Nowacki F, Poves A, Zuker A P 2005 Rev. Mod. Phys. 77 427
Google Scholar
[12] Bender M, Heenen P H, Reinhard P G 2003 Rev. Mod. Phys. 75 121
Google Scholar
[13] Ring P 1996 Prog. Part. Nucl. Phys. 37 193
Google Scholar
[14] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470
Google Scholar
[15] Meng J 2016 Relativistic Density Functional for Nuclear Structure (Singapore: World Scientific) pp305–354
[16] Shen S, Liang H, Long W H, Meng J, Ring P 2019 Prog. Part. Nucl. Phys. 109 103713
Google Scholar
[17] Goriely S, Chamel N, Pearson J 2016 Phys. Rev. C 93 034337
Google Scholar
[18] Xia X, Lim Y, Zhao P, et al. 2018 At. Data Nucl. Data Tables 121 1
Google Scholar
[19] Möller P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1
Google Scholar
[20] Benediktsson J, Swain P, Ersoy O 1990 IEEE Trans. Geosci. Remote Sens. 28 540
Google Scholar
[21] Boehnlein A, Diefenthaler M, Sato N, Schram M, Ziegler V, Fanelli C, Hjorth-Jensen M, Horn T, Kuchera M P, Lee D, Nazarewicz W, Ostroumov P, Orginos K, Poon A, Wang X N, Scheinker A, Smith M S, Pang L G 2022 Rev. Mod. Phys. 94 031003
Google Scholar
[22] Wu X H 2023 Front. Phys. 11 1061042
Google Scholar
[23] Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303
Google Scholar
[24] Ming X C, Zhang H F, Xu R R, Sun X D, Tian Y, Ge Z G 2022 Nucl. Sci. Tech. 33 48
Google Scholar
[25] Shou R, Yin X, Ma C, Lin M, Zhao Y 2022 Phys. Rev. C 106 L061304
Google Scholar
[26] Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109
Google Scholar
[27] Neufcourt L, Cao Y, Giuliani S, Nazarewicz W, Olsen E, Tarasov O B 2020 Phys. Rev. C 101 014319
Google Scholar
[28] Neufcourt L, Cao Y, Nazarewicz W, et al. 2018 Phys. Rev. C 98 034318
Google Scholar
[29] Rodríguez U B, Vargas C Z, Gonçalves M, Duarte S B, Guzmán F 2019 J. Phys. G: Nucl. Part. Phys. 46 115109
Google Scholar
[30] Rodríguez U B, Vargas C Z, Gonçalves M, Duarte S B, Guzmán F 2019 Europhys. Lett. 127 42001
Google Scholar
[31] Utama R, Piekarewicz J, Prosper H 2016 Phys. Rev. C 93 014311
Google Scholar
[32] Bayram T, Akkoyun S, Kara S O 2014 Ann. Nucl. Energy 63 172
Google Scholar
[33] Gazula S, Clark J, Bohr H 1992 Nucl. Phys. A 540 1
Google Scholar
[34] Gernoth K, Clark J, Prater J, Bohr H 1993 Phys. Lett. B 300 1
Google Scholar
[35] Niu Z, Liang H 2018 Phys. Lett. B 778 48
Google Scholar
[36] Athanassopoulos S, Mavrommatis E, Gernoth K, Clark J W 2004 Nucl. Phys. A 743 222
Google Scholar
[37] Clark J W, Li H 2006 Int. J. Mod. Phys. B 20 5015
Google Scholar
[38] Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311
Google Scholar
[39] Dong X X, An R, Lu J X, Geng L S 2023 Phys. Lett. B 838 137726
Google Scholar
[40] Dong X X, An R, Lu J X, Geng L S 2022 Phys. Rev. C 105 014308
Google Scholar
[41] Ma J Q, Zhang Z H 2022 Chin. Phys. C 46 074105
Google Scholar
[42] Ma Y, Su C, Liu J, Ren Z, Xu C, Gao Y 2020 Phys. Rev. C 101 014304
Google Scholar
[43] Wu D, Bai C, Sagawa H, Zhang H 2020 Phys. Rev. C 102 054323
Google Scholar
[44] Utama R, Chen W C, Piekarewicz J 2016 J. Phys. G: Nucl. Part. Phys. 43 114002
Google Scholar
[45] Akkoyun S, Bayram T, Kara S O, Sinan A 2013 J. Phys. G: Nucl. Part. Phys. 40 055106
Google Scholar
[46] Yuan Z, Tian D, Li J, Niu Z 2021 Chin. Phys. C 45 124107
Google Scholar
[47] Clark J W, Gernoth K A, Dittmar S, Ristig M 1999 Phys. Rev. E 59 6161
Google Scholar
[48] Gernoth K A, Clark J W 1995 Neural Networks 8 291
Google Scholar
[49] Shang T S, Li J, Niu Z M 2022 Nucl. Sci. Tech. 33 153
Google Scholar
[50] Yang Z X, Fan X H, Naito T, Niu Z, Li Z P, Liang H 2022 arXiv: 2205.15649[nucl-th]
[51] Yang Z X, Fan X H, Yin P, Zuo W 2021 Phys. Lett. B 823 136650
Google Scholar
[52] Costiris N, Mavrommatis E, Gernoth K A, Clark J W 2009 Phys. Rev. C 80 044332
Google Scholar
[53] Wang Y, Zhang X, Niu Z, Li Z 2022 Phys. Lett. B 830 137154
Google Scholar
[54] Akkoyun S, Kaya H, Torun Y 2022 Indian J. Phys. 96 1791
Google Scholar
[55] Lasseri R D, Regnier D, Ebran J P, Penon A 2020 Phys. Rev. Lett. 124 162502
Google Scholar
[56] Akkoyun S, Laouet N, Benrachi F 2020 arXiv: 2001.08561[nucl-th]
[57] Ma N N, Zhao T L, Wang W X, Zhang H F 2023 Phys. Rev. C 107 014310
Google Scholar
[58] Li C Q, Tong C N, Du H J, Pang L G 2022 Phys. Rev. C 105 064306
Google Scholar
[59] Yuan Z, Bai D, Ren Z, Wang Z 2022 Chin. Phys. C 46 024101
Google Scholar
[60] Kwon M, Oh Y, Song Y H, et al. 2021 New Physics: Sae Mulli 71 599
Google Scholar
[61] Zhang X, Lin W, Yao J M, Jiao C F, Romero A M, Rodríguez T R, Hergert H 2023 Phys. Rev. C 107 024304
Google Scholar
[62] Munoz J M, Akkoyun S, Reyes Z P, Pachon L A 2023 Phys. Rev. C 107 034308
Google Scholar
[63] Niu Z, Liang H, Sun B, et al. 2019 Phys. Rev. C 99 064307
Google Scholar
[64] Costiris N, Mavrommatis E, Gernoth K, Clark J, Li H 2008 arXiv: 0809.0383[nucl-th]
[65] Akkoyun S, Amrani N, Bayram T 2023 Appl. Radiat. Isot. 191 110554
Google Scholar
[66] Huang T X, Wu X H, Zhao P W 2022 Commun. Theor. Phys. 74 095302
Google Scholar
[67] Ma C W, Wei X B, Chen X X, Peng D, Wang Y T, Pu J, Cheng K X, Guo Y F, Wei H L 2022 Chin. Phys. C 46 074104
Google Scholar
[68] Peng D, Wei H L, Chen X X, Wei X B, Wang Y T, Pu J, Cheng K X, Ma C W 2022 J. Phys. G: Nucl. Part. Phys. 49 085102
Google Scholar
[69] Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44 014104
Google Scholar
[70] Ma C W, Peng D, Wei H L, Wang Y T, Pu J 2020 Chin. Phys. C 44 124107
Google Scholar
[71] Ma C W, Wei H L, Liu X Q, Su J, Zheng H, Lin W P, Zhang Y X 2021 Prog. Part. Nucl. Phys. 121 103911
Google Scholar
[72] Yesilkanat C M, Akkoyun S 2023 J. Phys. G: Nucl. Part. Phys. 50 055101
Google Scholar
[73] Akkoyun S, Bayram T 2014 Int. J. Mod. Phys. E 23 1450064
Google Scholar
[74] Wang X, Zhu L, Su J 2021 Phys. Rev. C 104 034317
Google Scholar
[75] Wu D, Bai C, Sagawa H, Nishimura S, Zhang H 2021 Phys. Rev. C 104 054303
Google Scholar
[76] Wu X, Ren Z, Zhao P, et al. 2022 Phys. Rev. C 105 L031303
Google Scholar
[77] Alhassan E, Rochman D, Vasiliev A, Hursin M, Koning A J, Ferroukhi H 2022 Nucl. Sci. Tech. 33 50
Google Scholar
[78] Möller P, Nix J R 1990 Nucl. Phys. A 520 c369
Google Scholar
[79] Breiman L 2001 Mach. Learn. 45 5
Google Scholar
[80] Chen T, Guestrin C 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco, USA, August 13–17, 2016 p785
[81] Carnini M, Pastore A 2020 J. Phys. G: Nucl. Part. Phys. 47 082001
Google Scholar
[82] Maderna C, Soardi P M 1985 Lezioni di analisi matematica (Torino: Città Studi Edizioni) pp1–354
[83] Pedregosa F, Varoquaux G, Gramfort A, et al. 2011 J. Mach. Learn. Res. 12 2825
Google Scholar
[84] From ENSDF database as of 5.16, 2019. Version available at http://www.nndc.bnl.gov/ensarchivals/[2019-5-16]
[85] Wraith C, Yang X, Xie L, Babcock C, Bieroń J, Billowes J, Bissell M, Blaum K, Cheal B, Filippin L, Garcia Ruiz R, Gins W, Grob L, Gaigalas G, Godefroid M, Gorges C, Heylen H, Honma M, Jönsson P, Kaufmann S, Kowalska M, Krämer J, Malbrunot-Ettenauer S, Neugart R, Neyens G, Nörtershäuser W, Nowacki F, Otsuka T, Papuga J, Sánchez R, Tsunoda Y, Yordanov D 2017 Phys. Lett. B 771 385
Google Scholar
计量
- 文章访问数: 4206
- PDF下载量: 99
- 被引次数: 0