搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子压缩感知的宽带射频信号测量

韩彦睿 李伟 臧延华 杨昌钢 陈瑞云 张国峰 秦成兵 胡建勇 肖连团

引用本文:
Citation:

基于量子压缩感知的宽带射频信号测量

韩彦睿, 李伟, 臧延华, 杨昌钢, 陈瑞云, 张国峰, 秦成兵, 胡建勇, 肖连团

Broadband radio frequency signal measurement based on quantum compression sensing

Han Yan-Rui, Li Wei, Zang Yan-Hua, Yang Chang-Gang, Chen Rui-Yun, Zhang Guo-Feng, Qin Cheng-Bing, Hu Jian-Yong, Xiao Lian-Tuan
PDF
HTML
导出引用
  • 随着雷达、电子战和5G通信等无线射频技术的快速发展, 对宽带射频信号的测量和实时频谱表征变得越来越重要. 传统射频信号实时测量技术受模数转换器采样率和数字信号处理能力的限制, 存在测量带宽窄、数据量大、易受电磁干扰等问题. 本文提出一种基于量子压缩感知的射频信号测量技术, 使用集成电光晶体作为射频传感, 通过被测射频信号调制光子波函数构建压缩感知机, 实现对宽带射频信号的压缩测量, 显著提升了频谱感知带宽. 实验演示了工频和中频高压信号的长时间频谱监测, 以及高频射频信号的实时频谱测量. 在傅里叶极限频谱分辨率下, 实现了GHz量级的实时频谱分析带宽, 数据压缩率达到1.7×10–5, 可以满足5G无线通信、认知无线电等应用对宽带射频信号频谱测量的需求, 为发展下一代宽带频谱感知技术提供了新的技术路径.
    With the rapid development of radio frequency technology such as radar, electronic warfare and 5G communication, the measurement and real-time spectrum characterization of broadband radio frequency signals become increasingly important. The traditional radio frequency signal real-time measurement technology is limited by the sampling rate of analog-to-digital converter and the ability to process digital signals, and encounters the problems of narrow measurement band, large data volume, and susceptibility to electromagnetic interference. This work is to study a radio frequency signal measurement technology based on quantum compression sensing, which uses integrated electro-optical crystal as radio frequency sensor, and constructs a compression sensing machine by modulating the photon wave function of the measured radio frequency signal to realize the compression measurement of broadband radio frequency signal, significantly improving the spectrum sensing bandwidth. The experiment demonstrates the long-term spectrum monitoring of power frequency and intermediate frequency high voltage signals, and the real-time spectrum measurement of high frequency radio frequency signals. Under the Fourier limit spectrum resolution, the real-time spectrum analysis bandwidth of GHz magnitude is realized, and the data compression rate reaches 1.7×10–5, which can meet the needs of 5G wireless communication, cognitive radio and other applications for broadband radio frequency signal spectrum measurement, and provide a new technical path for developing the next-generation broadband spectrum sensing technology.
      通信作者: 胡建勇, jyhu@sxu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 62105193)资助的课题.
      Corresponding author: Hu Jian-Yong, jyhu@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62105193).
    [1]

    Lu H H, Li C Y, Tsai W S, Lin R D, Tang Y S, Chen Y X, Lin Y S, Fan W C 2022 J. Lightw. Technol. 40 7790Google Scholar

    [2]

    Qi Y H, Yang G, Liu L, Fan J, Antonio O, Kong H W, Yu W, Yang Z P 2017 IEEE Trans. Electromagn. Compat. 59 1661Google Scholar

    [3]

    William B, Elias A, Aboulnasr H 2022 IEEE Trans. Signal Process. 70 729Google Scholar

    [4]

    Gupta M S, Kumar K 2019 J. Netw. Comput. Appl. 143 47Google Scholar

    [5]

    Chen L, Liu Y 2016 International Conference on Information Science and Control Engineering Beijing, China, July 8–10, 2016 p1379

    [6]

    Shi J Z, Zhang F Z, Ben D, Pan S L 2020 J. Lightw. Technol. 38 2171Google Scholar

    [7]

    Zou X H, Lu B, Pan W, Yan L S, Stohr A, Yao J P 2016 Laser Photonics Rev. 10 711Google Scholar

    [8]

    Murat T, Won N 2021 IEEE Access 9 30060Google Scholar

    [9]

    David L D 2006 IEEE Trans. Inf. Theory 52 1289Google Scholar

    [10]

    Candes E J, Romberg J 2006 Found. Comput. Math. 6 227Google Scholar

    [11]

    Candes E J, Tao T 2006 IEEE Trans. Inf. Theory 52 5406Google Scholar

    [12]

    Ragheb T, Kirolos S, Laska J, Gilbert A, Strauss M, Baraniuk R, Massoud Y 2007 50th Midwest Symposium on Circuits and Systems Montreal QC, Canada, August 5–8, 2007 p325

    [13]

    Qin Z J, Fan J C, Liu Y W, Gao Y, Li G Y 2018 IEEE Signal Processing Mag. 35 40Google Scholar

    [14]

    Shin H, Harjani R 2017 IEEE J. Solid-State Circuits 52 1753Google Scholar

    [15]

    Shindo D, Tanigaki T, Park H S 2017 Adv. Mater. 29 1602216Google Scholar

    [16]

    Zhang J Y, Li X Z, Du C H, Jiang Y, Ma Z G, Chen H, Jia H Q, Wang W X, Deng Z 2022 IEEE Photon. J. 14 1Google Scholar

    [17]

    方云团, 王誉雅, 夏景 2019 68 194201Google Scholar

    Fang Y T, Wang Y Y, Xia J 2019 Acta Phys. Sin. 68 194201Google Scholar

    [18]

    Seng F, Stan N, King R, Josephson C, Shumway L, Hammond A, Velasco I, Johnston H, Schultz S M 2017 J. Lightw. Technol. 35 669Google Scholar

    [19]

    Li Y S, Gao L, Wan J, Liu J 2020 Appl. Opt. 59 6237Google Scholar

    [20]

    Zhu B B, Xue M, Yu C Y, Pan S L 2021 Chin. Opt. Lett. 19 101202Google Scholar

    [21]

    Shi D F, Li G Y, Jia Z Y, Wen J, Li M, Zhu N H, Li W 2021 Opt. Eepress 29 19515Google Scholar

    [22]

    Luo M D, Yang F, Dong F N, Chen N, Liao W 2022 J. Lightw. Technol. 40 2577Google Scholar

    [23]

    Wang X X, Korzh B A, Weigel P O, Nemchick D J, Drouin B J, Becker W, Zhao Q Y, Zhu D, Colangelo M, Dane A E, Berggren K K, Shaw M D, Mookherjea S 2019 J. Lightw. Technol. 38 166

    [24]

    Hao T F, Yang Y, Jin Y Q, Xiang X, Li W, Zhu N H, Dong R F, Li M 2022 J. Lightw. Technol. 40 6616Google Scholar

    [25]

    Zhu L, Wang G J, Huang F M, Li Y, Chen W, Hong H Y 2022 IEEE Geosci. Remote Sens. Lett. 19 1Google Scholar

    [26]

    Baraniuk R G 2007 IEEE Signal Processing Mag. 24 118Google Scholar

    [27]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 16144Google Scholar

    [28]

    Hu J Y, Jing M Y, Zhang G F, Qin C B, Xiao L T, Jia S T 2018 Opt. Express 26 20835Google Scholar

    [29]

    Hu J Y, Liu Y, Liu L L, Yu B, Zhang G F, Xiao L T, Jia S T 2015 Photon. Res. 3 24Google Scholar

    [30]

    李长胜 2014 63 074207Google Scholar

    Li C S 2014 Acta Phys. Sin. 63 074207Google Scholar

  • 图 1  射频信号传感结构示意图

    Fig. 1.  Schematic diagram of radio frequency signal sensing structure.

    图 2  基于量子压缩感知的宽带射频信号测量系统示意图

    Fig. 2.  Schematic diagram of broadband radio frequency signal measurement system based on quantum compressed sensing.

    图 3  工频电场作用下射频信号传感响应

    Fig. 3.  Sensor response under the action of power frequency electric field.

    图 4  射频信号传感特性 (a) 输入输出振幅特性; (b) 频率响应曲线

    Fig. 4.  Radio frequency signal sensing characteristics: (a) Input and output characteristics; (b) frequency response curve.

    图 5  施加电场波形及射频信号传感响应 (a) 50 Hz正弦波电场响应; (b) 50 Hz三角波电场响应; (c) 50 Hz方波电场响应; (d) 1 kHz正弦波电场响应

    Fig. 5.  Applied electric field waveform and radio frequency signal sensing response: (a) 50 Hz sine wave electric field response; (b) 50 Hz triangle wave electric field response; (c) 50 Hz square wave electric field response; (d) 1 kHz sine wave electric field response.

    图 6  短时低频频谱感知 (a) 工频频谱感知结果; (b) 中频频谱感知结果

    Fig. 6.  Short-term low-frequency spectrum perception: (a) Power frequency spectrum perception results; (b) intermediate frequency spectrum perception results.

    图 7  长时监测频谱感知 (a)工频频谱测量结果; (b)中频频谱测量结果

    Fig. 7.  Long-term monitoring spectrum perception: (a) Power frequency spectrum perception results; (b) intermediate frequency spectrum perception results.

    图 8  短时频谱感知线宽分析 (a) 工频频谱线宽; (b) 中频频谱线宽

    Fig. 8.  Linewidth analysis of short-time spectrum sensing: (a) Power frequency spectrum linewidth; (b) intermediate frequency spectrum linewidth.

    图 9  长时监测频谱感知线宽分析 (a) 工频频谱线宽; (b) 中频频谱线宽

    Fig. 9.  Long-term monitoring spectrum perception linewidth analysis: (a) Power frequency spectrum linewidth; (b) intermediate frequency spectrum linewidth.

    图 10  宽带信号频谱恢复结果 (a) 1 GHz信号频谱; (b) 2 GHz信号频谱

    Fig. 10.  Broadband signal spectrum recovery result: (a) 1 GHz signal spectrum; (b) 2 GHz signal spectrum.

    表 1  线性拟合分析结果

    Table 1.  Linear fitting analysis results.

    截距C斜率K线性拟合度R
    参数值/mV标准差参数值/mV标准差0.99611
    3.419440.980360.737170.01742
    下载: 导出CSV
    Baidu
  • [1]

    Lu H H, Li C Y, Tsai W S, Lin R D, Tang Y S, Chen Y X, Lin Y S, Fan W C 2022 J. Lightw. Technol. 40 7790Google Scholar

    [2]

    Qi Y H, Yang G, Liu L, Fan J, Antonio O, Kong H W, Yu W, Yang Z P 2017 IEEE Trans. Electromagn. Compat. 59 1661Google Scholar

    [3]

    William B, Elias A, Aboulnasr H 2022 IEEE Trans. Signal Process. 70 729Google Scholar

    [4]

    Gupta M S, Kumar K 2019 J. Netw. Comput. Appl. 143 47Google Scholar

    [5]

    Chen L, Liu Y 2016 International Conference on Information Science and Control Engineering Beijing, China, July 8–10, 2016 p1379

    [6]

    Shi J Z, Zhang F Z, Ben D, Pan S L 2020 J. Lightw. Technol. 38 2171Google Scholar

    [7]

    Zou X H, Lu B, Pan W, Yan L S, Stohr A, Yao J P 2016 Laser Photonics Rev. 10 711Google Scholar

    [8]

    Murat T, Won N 2021 IEEE Access 9 30060Google Scholar

    [9]

    David L D 2006 IEEE Trans. Inf. Theory 52 1289Google Scholar

    [10]

    Candes E J, Romberg J 2006 Found. Comput. Math. 6 227Google Scholar

    [11]

    Candes E J, Tao T 2006 IEEE Trans. Inf. Theory 52 5406Google Scholar

    [12]

    Ragheb T, Kirolos S, Laska J, Gilbert A, Strauss M, Baraniuk R, Massoud Y 2007 50th Midwest Symposium on Circuits and Systems Montreal QC, Canada, August 5–8, 2007 p325

    [13]

    Qin Z J, Fan J C, Liu Y W, Gao Y, Li G Y 2018 IEEE Signal Processing Mag. 35 40Google Scholar

    [14]

    Shin H, Harjani R 2017 IEEE J. Solid-State Circuits 52 1753Google Scholar

    [15]

    Shindo D, Tanigaki T, Park H S 2017 Adv. Mater. 29 1602216Google Scholar

    [16]

    Zhang J Y, Li X Z, Du C H, Jiang Y, Ma Z G, Chen H, Jia H Q, Wang W X, Deng Z 2022 IEEE Photon. J. 14 1Google Scholar

    [17]

    方云团, 王誉雅, 夏景 2019 68 194201Google Scholar

    Fang Y T, Wang Y Y, Xia J 2019 Acta Phys. Sin. 68 194201Google Scholar

    [18]

    Seng F, Stan N, King R, Josephson C, Shumway L, Hammond A, Velasco I, Johnston H, Schultz S M 2017 J. Lightw. Technol. 35 669Google Scholar

    [19]

    Li Y S, Gao L, Wan J, Liu J 2020 Appl. Opt. 59 6237Google Scholar

    [20]

    Zhu B B, Xue M, Yu C Y, Pan S L 2021 Chin. Opt. Lett. 19 101202Google Scholar

    [21]

    Shi D F, Li G Y, Jia Z Y, Wen J, Li M, Zhu N H, Li W 2021 Opt. Eepress 29 19515Google Scholar

    [22]

    Luo M D, Yang F, Dong F N, Chen N, Liao W 2022 J. Lightw. Technol. 40 2577Google Scholar

    [23]

    Wang X X, Korzh B A, Weigel P O, Nemchick D J, Drouin B J, Becker W, Zhao Q Y, Zhu D, Colangelo M, Dane A E, Berggren K K, Shaw M D, Mookherjea S 2019 J. Lightw. Technol. 38 166

    [24]

    Hao T F, Yang Y, Jin Y Q, Xiang X, Li W, Zhu N H, Dong R F, Li M 2022 J. Lightw. Technol. 40 6616Google Scholar

    [25]

    Zhu L, Wang G J, Huang F M, Li Y, Chen W, Hong H Y 2022 IEEE Geosci. Remote Sens. Lett. 19 1Google Scholar

    [26]

    Baraniuk R G 2007 IEEE Signal Processing Mag. 24 118Google Scholar

    [27]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 16144Google Scholar

    [28]

    Hu J Y, Jing M Y, Zhang G F, Qin C B, Xiao L T, Jia S T 2018 Opt. Express 26 20835Google Scholar

    [29]

    Hu J Y, Liu Y, Liu L L, Yu B, Zhang G F, Xiao L T, Jia S T 2015 Photon. Res. 3 24Google Scholar

    [30]

    李长胜 2014 63 074207Google Scholar

    Li C S 2014 Acta Phys. Sin. 63 074207Google Scholar

计量
  • 文章访问数:  3406
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-06-12
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回
Baidu
map