搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向信息带宽的频谱感知方法研究

张京超 付宁 乔立岩 彭喜元

引用本文:
Citation:

一种面向信息带宽的频谱感知方法研究

张京超, 付宁, 乔立岩, 彭喜元

Investigation of information bandwidth oriented spectrum sensing method

Zhang Jing-Chao, Fu Ning, Qiao Li-Yan, Peng Xi-Yuan
PDF
导出引用
  • 本文利用频带宽度先验信息,提出一种面向信息带宽的自适应调制宽带转换器结构. 该结构的总采样率为信号信息带宽的四倍,远小于信号的奈奎斯特采样频率,从而更有效利用采样资源,降低采样数据量,提高处理实时性. 通过对该结构中随机波形函数周期的选择,可以实现对系统采样率和系统物理实现复杂度的权衡取舍,从而适应不同场合中的应用. 本文通过理论分析给出了该结构实现信号精确重构的充分条件. 引入多重信号分类算法,分析了该结构适用此算法的充分条件. 本文通过仿真实验对上述分析进行了有效性验证. 该系统可以应用于隐形装备的吸波材料的前端特性分析、认知无线电的频谱感知.
    Existing spectrum sensing systems are commonly designed based on the famous Nyquist theorem. With the rapid development of radio frequency technology, the corresponding sampling frequency is so high that many problems may be brought about, such as the increasing hardware complexity, large volume of measurements and difficulties to meet the real time requirement etc. To tackle these problems caused by high sampling frequency, a novel scheme, adaptive modulated wideband converter, is proposed. By exploiting the band width of the narrow bands, the total sampling frequency is proved to be as low as four times of the sum of the narrow bands. There is a trade-off between the sampling complexity and the total sampling frequency for different choices of the repeating frequency of the random function. Sufficient conditions are derived to guarantee exact signal recovery from sub-Nyquist measurements. Conditions of full row rank of the equivalent unknown matrix are also explored to guarantee that the multiple signal classification can be adopted to implement the signal reconstruction. The simulations verify the analysis. This novel scheme can be used to implement front-end spectrum analysis for absorbing materials and detect the active channels in cognitive radio.
    • 基金项目: 国家自然科学基金(批准号:61102148)和黑龙江省博士后基金(批准号:LBH-Z10167)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61102148), and the Heilongjiang Postdoctoral Foundation, China (Grant No. LBH-Z10167).
    [1]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 1 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 60 1]

    [2]

    Chen Q, Jiang J J, Bie S W, Wang P, Liu P, Xu X X 2011 Acta Phys. Sin. 60 7 (in Chinese) [陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣 2011 60 7]

    [3]

    Li J, Wen G J, Huang Y J, Wang P, Sun Y H 2013 Acta Phys. Sin. 62 8 (in Chinese) [李建, 文光俊, 黄勇军, 王平, 孙元华 2013 62 8]

    [4]

    Sun B, Jiang J J 2013 Acta Phys. Sin. 60 11 (in Chinese) [孙彪, 江建军 2011 60 11]

    [5]

    Liu Y, Peng Q C, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 7 (in Chinese) [刘允, 彭启琮, 邵怀宗, 彭启航, 王玲 2013 62 7]

    [6]

    Zheng S L, Yang X N 2013 Acta Phys. Sin. 62 7 (in Chinese) [郑仕链, 杨小牛 2013 62 7]

    [7]

    Zu Y X, Zhou J 2012 Chin. Phys. B 21 1

    [8]

    Zu Y X, Zhou J, Zeng C C 2010 Chin. Phys. B 19 11

    [9]

    Bao D, Vito L, Rapuano S 2013 IEEE Trans. Instrum. Meas. 62 7

    [10]

    Tropp J A, Laska J N, Duarte M F, Romberg J K, Baraniuk R G 2010 IEEE Trans. Inf. Theory 56 1

    [11]

    Eldar Y C, Michaeli T 2009 IEEE Signal Process. Mag. 26 3

    [12]

    Dominguez-Jimenez M E, Gonzalez-Prelcic N, Vazquez-Vilar G, Lopez-Valcarce R 2012 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Kyoto, Japan, March 25–30, 2012

    [13]

    Romberg J 2009 SIAM Journal on Imaging Sciences 2 4

    [14]

    Tropp J A, Wakin M B, Duarte M F, Baron D, Baraniuk R G 2006 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Toulouse, France, May 14–19, 2006

    [15]

    Mishali M, Eldar Y C 2010 IEEE J. Sel. Topics Signal Process. 4 2

    [16]

    Mishali M, Eldar Y C 2011 IEEE Signal Process. Mag. 28 4

    [17]

    Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 2

    [18]

    Tropp J A, Gilbert A C, Strauss M J 2006 Signal Processing 86 3

    [19]

    Eldar Y C, Rauhut H 2010 IEEE Trans. Inf. Theory 56 1

    [20]

    Mishali M, Eldar Y C 2008 IEEE Signal Process. 56 10

    [21]

    Schmidt R 1986 IEEE Trans. Antennas Propag. 34 3

    [22]

    Feng P, Bresler Y 1996 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Atlanta, USA, May 7–10, 1996

  • [1]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 1 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 60 1]

    [2]

    Chen Q, Jiang J J, Bie S W, Wang P, Liu P, Xu X X 2011 Acta Phys. Sin. 60 7 (in Chinese) [陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣 2011 60 7]

    [3]

    Li J, Wen G J, Huang Y J, Wang P, Sun Y H 2013 Acta Phys. Sin. 62 8 (in Chinese) [李建, 文光俊, 黄勇军, 王平, 孙元华 2013 62 8]

    [4]

    Sun B, Jiang J J 2013 Acta Phys. Sin. 60 11 (in Chinese) [孙彪, 江建军 2011 60 11]

    [5]

    Liu Y, Peng Q C, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 7 (in Chinese) [刘允, 彭启琮, 邵怀宗, 彭启航, 王玲 2013 62 7]

    [6]

    Zheng S L, Yang X N 2013 Acta Phys. Sin. 62 7 (in Chinese) [郑仕链, 杨小牛 2013 62 7]

    [7]

    Zu Y X, Zhou J 2012 Chin. Phys. B 21 1

    [8]

    Zu Y X, Zhou J, Zeng C C 2010 Chin. Phys. B 19 11

    [9]

    Bao D, Vito L, Rapuano S 2013 IEEE Trans. Instrum. Meas. 62 7

    [10]

    Tropp J A, Laska J N, Duarte M F, Romberg J K, Baraniuk R G 2010 IEEE Trans. Inf. Theory 56 1

    [11]

    Eldar Y C, Michaeli T 2009 IEEE Signal Process. Mag. 26 3

    [12]

    Dominguez-Jimenez M E, Gonzalez-Prelcic N, Vazquez-Vilar G, Lopez-Valcarce R 2012 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Kyoto, Japan, March 25–30, 2012

    [13]

    Romberg J 2009 SIAM Journal on Imaging Sciences 2 4

    [14]

    Tropp J A, Wakin M B, Duarte M F, Baron D, Baraniuk R G 2006 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Toulouse, France, May 14–19, 2006

    [15]

    Mishali M, Eldar Y C 2010 IEEE J. Sel. Topics Signal Process. 4 2

    [16]

    Mishali M, Eldar Y C 2011 IEEE Signal Process. Mag. 28 4

    [17]

    Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 2

    [18]

    Tropp J A, Gilbert A C, Strauss M J 2006 Signal Processing 86 3

    [19]

    Eldar Y C, Rauhut H 2010 IEEE Trans. Inf. Theory 56 1

    [20]

    Mishali M, Eldar Y C 2008 IEEE Signal Process. 56 10

    [21]

    Schmidt R 1986 IEEE Trans. Antennas Propag. 34 3

    [22]

    Feng P, Bresler Y 1996 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Atlanta, USA, May 7–10, 1996

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法.  , 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [3] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析.  , 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [4] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法.  , 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [5] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法.  , 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [6] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法.  , 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [9] 张茜, 刘光斌, 余志勇, 郭金库. 一种面向中继协作频谱感知系统的自适应全局最优化算法.  , 2015, 64(1): 018404. doi: 10.7498/aps.64.018404
    [10] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [11] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法.  , 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [12] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [13] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [14] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法.  , 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [15] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [16] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [17] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [18] 郑仕链, 杨小牛. 用于认知无线电协作频谱感知的混合蛙跳算法群体初始化技术.  , 2013, 62(7): 078405. doi: 10.7498/aps.62.078405
    [19] 孙彪, 江建军. 标志位频谱感知方法研究.  , 2011, 60(11): 110701. doi: 10.7498/aps.60.110701
    [20] 郑仕链, 楼才义, 杨小牛. 基于改进混合蛙跳算法的认知无线电协作频谱感知.  , 2010, 59(5): 3611-3617. doi: 10.7498/aps.59.3611
计量
  • 文章访问数:  6046
  • PDF下载量:  779
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-22
  • 修回日期:  2013-10-23
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map