-
利用严格对角化方法研究了Thue-Morse准周期调制下 自旋1/2反铁磁XY模型中的晶格畸变行为. 结果显示: 系统中每个格点的晶格畸变幅度介于均匀分布和无序分布之间. 对于较弱的准周期调制, 调制强度的增加有利于晶格畸变的形成. 但是, 对于较强的准周期调制, 调制强度的增加则阻碍晶格畸变的形成. 此外, 系统低能谱的能隙也明显受到准周期调制的影响.
-
关键词:
- 晶格畸变 /
- Thue-Morse序列 /
- 准周期调制
The behaviors of lattice distortions in the spin 1/2 antiferromagnetic XY model with Thue-Morse quasiperiodic modulation are investigated by the method of exact diagonalization. It is found that the lattice distortion at each site has the character intermediate between the periodic and random systems. For weaker or stronger quasiperiodic modulation, the lattice distortion may increase or decrease with strengthening of the modulation amplitude, respectively. The results also indicate that the energy gaps of ground states are strongly affected by the quasiperiodic modulation-
Keywords:
- lattice distortion /
- Thue-Morse sequence /
- quasiperiodic modulation
[1] Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Tam W Y, Vastano J A, Swinney H L, Horsthemke W 1988 Phys. Rev. Lett. 61 2163
[3] Macon L, Desideri J P, Sornette D 1989 Phys. Rev. B 40 3605
[4] Du Y, Zhu S N, Zhu Y Y, Xu P, Zhang C, Chen Y B, Liu Z W, Ming N B, Zhang X R, Zhang F F, Zhang S Y 2002 Appl. Phys. Lett. 81 1573
[5] Dou J H, Sheng Y, Zhang D Z 2009 Acta Phys. Sin. 58 4685 (in Chinese) [窦军红, 盛艳, 张道中 2009 58 4685]
[6] Wang X N, Geng X G, Zang D Y 2013 Acta Phys. Sin. 62 054701 (in Chinese) [王晓娜, 耿兴国, 臧渡洋 2013 62 054701]
[7] Zhong J X, Mosseri R 1995 J. Phys. C 7 8383
[8] Piéchon F 1996 Phys. Rev. Lett. 76 4372
[9] Liu Y Y, Fu X J, Huang X Q 1997 Progress in Physics 17 1 (in Chinese) [刘有延, 傅秀军, 黄秀清 1997 物理学进展 17 1]
[10] Cheng Z, Savit R, Merlin R 1988 Phys. Rev. B 37 4375
[11] Axel F, Peyriere J 1989 J. Stat. Phys. 57 1013
[12] Li P F, Chen Y G 2009 Phys. Scr. 79 055701
[13] Ma T X, Liang C, Wang L G, Lin H Q 2012 Appl. Phys. Lett. 100 252402
[14] Noh H, Yang J K, Boriskina S V, Rooks M J, Solomon G S, Negro L D, Cao H 2011 Appl. Phys. Lett. 98 201109
[15] Li Y Z, Chen Y G, Shi Y L 2006 Acta Phys. Sin. 55 2539 (in Chinese) [李煜芝, 陈宇光, 石云龙 2006 55 2539]
[16] Leib E H, Shultz T, Mattis D J 1961 Ann. Phys. (NY) 16 407
[17] Fang Z, Liu Z L, Yao K L 1994 Phys. Rev. B 49 3916
-
[1] Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Tam W Y, Vastano J A, Swinney H L, Horsthemke W 1988 Phys. Rev. Lett. 61 2163
[3] Macon L, Desideri J P, Sornette D 1989 Phys. Rev. B 40 3605
[4] Du Y, Zhu S N, Zhu Y Y, Xu P, Zhang C, Chen Y B, Liu Z W, Ming N B, Zhang X R, Zhang F F, Zhang S Y 2002 Appl. Phys. Lett. 81 1573
[5] Dou J H, Sheng Y, Zhang D Z 2009 Acta Phys. Sin. 58 4685 (in Chinese) [窦军红, 盛艳, 张道中 2009 58 4685]
[6] Wang X N, Geng X G, Zang D Y 2013 Acta Phys. Sin. 62 054701 (in Chinese) [王晓娜, 耿兴国, 臧渡洋 2013 62 054701]
[7] Zhong J X, Mosseri R 1995 J. Phys. C 7 8383
[8] Piéchon F 1996 Phys. Rev. Lett. 76 4372
[9] Liu Y Y, Fu X J, Huang X Q 1997 Progress in Physics 17 1 (in Chinese) [刘有延, 傅秀军, 黄秀清 1997 物理学进展 17 1]
[10] Cheng Z, Savit R, Merlin R 1988 Phys. Rev. B 37 4375
[11] Axel F, Peyriere J 1989 J. Stat. Phys. 57 1013
[12] Li P F, Chen Y G 2009 Phys. Scr. 79 055701
[13] Ma T X, Liang C, Wang L G, Lin H Q 2012 Appl. Phys. Lett. 100 252402
[14] Noh H, Yang J K, Boriskina S V, Rooks M J, Solomon G S, Negro L D, Cao H 2011 Appl. Phys. Lett. 98 201109
[15] Li Y Z, Chen Y G, Shi Y L 2006 Acta Phys. Sin. 55 2539 (in Chinese) [李煜芝, 陈宇光, 石云龙 2006 55 2539]
[16] Leib E H, Shultz T, Mattis D J 1961 Ann. Phys. (NY) 16 407
[17] Fang Z, Liu Z L, Yao K L 1994 Phys. Rev. B 49 3916
计量
- 文章访问数: 6068
- PDF下载量: 428
- 被引次数: 0