搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢化与非氢化石墨烯纳米条带的密度泛函研究

袁健美 毛宇亮

引用本文:
Citation:

氢化与非氢化石墨烯纳米条带的密度泛函研究

袁健美, 毛宇亮

Density functional study on hydrogenation and non-hydrogenation graphene nanoribbon

Yuan Jian-Mei, Mao Yu-Liang
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算方法,研究了宽度N=8的边缘氢化和非氢化条带的结构和电子性质. 研究表明,扶手形无氢化石墨纳米条带的边缘碳原子是以三重键相互结合,它在边缘的成键强度比氢化时要高,具有更强的化学活性,可作为纳米化学传感器的基础材料. 能带结构计算表明,无论是扶手形条带还是锯齿形条带,它们都是具有带隙的半导体,且无氢化条带的带隙要比氢化的条带带隙宽度大,氢化对于条带的电子性质具有显著修饰作用. 通过锯齿形石墨纳米条带顺磁性、铁磁性和反铁磁性的计算,发现反铁磁的状态最稳定,并且边缘磁性最强,这有利于条带在自旋电子器件中的应用.
    Based on density functional theory and first-principles method, we investigate the structure and the electronic property of graphene nanoribbion with width N=8 and with or without hydrogen saturation on their edge. Our results show that the carbon atoms on the edge of armchair graphene nanoribbon without the hydrogen saturation are bonded together by triple bonding, which is stronger and more sensitive than that in the case of hydrogen saturation. This type of graphene nanoribbon can serve as a kind of basic material for nano-sensor. Our band structure calculations indicate that both armchair and zigzag nanoribbions are of semiconductor possessing an energy gap. Furthermore, the energy gap of nanoribbon without hydrogen saturation is larger than that with hydrogen saturation, which implies that hydrogen saturation has distinct decoration to the property of the nanoribbon. By the calculation of the paramagnetism, ferromagnetism and anti-ferromagnetism states of the zigzag graphene nanoribbon, we find that anti-ferromagnetism state is the most stable among them, and its magnetism on the edge is strongest, which is suitable for the application in spinelectronics.
    • 基金项目: 国家自然科学基金重点项目(批准号:11031006)、 国家自然科学基金青年科学基金(批准号:11004166)、 湖南省教育厅重点项目(批准号:09B103,10A117)和湖南省教育厅优秀青年项目资助的课题.
    [1]

    Yuan J M, Huang Y Q 2009 Journal of Molecular Structure: THEOCHEM 915 63

    [2]
    [3]

    Yuan J M, Huang Y Q 2010 Journal of Molecular Structure: THEOCHEM 942 88

    [4]

    Mao Y L, Stocks G M, Zhong J X 2010 New J. Phys. 12 033046

    [5]
    [6]
    [7]

    Mao Y L, Zhong J X 2009 New J. Phys. 11 093002

    [8]
    [9]

    Mao Y L, Zhong J X 2008 Nanotechnology 19 205708

    [10]

    Mao Y L, Yuan J M, Zhong J X 2008 J. Phys.: Condens. Matter 20 115209

    [11]
    [12]
    [13]

    Zhang W, Yang R, Zhao Y, Duan S Q, Zhang P, Ulloa S E 2010 Phys. Rev. B 81 214202

    [14]
    [15]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞、童国平、蒋永进 2009 58 8537]

    [16]

    Pan H Z, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲、徐 明、陈 丽、孙媛媛、王永龙 2010 59 6443]

    [17]
    [18]
    [19]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009 58 7156]

    [20]
    [21]

    Cao R G,Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根、王 音、林正喆、明 辰、庄 军、宁西京 2010 59 6438]

    [22]
    [23]

    Chen L N, Ma S S, Ouyang F P,Wu X Z, Xiao J, Xu H 2010 Chin. Phys. B 19 097301

    [24]
    [25]

    Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平、徐 慧、魏 辰 2008 57 1073]

    [26]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L Li 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲、谭振兵、马 丽、陈 军、杨 帆、屈凡明、刘广同、杨海方、杨昌黎、吕 力 2009 58 5726]

    [27]
    [28]
    [29]

    Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G, Gao H J 2009 Chin. Phys. B 18 3008

    [30]

    Katsunori W, Mitsutaka F, Hiroshi A, Manfred S 1999 Phys. Rev. B 59 8271

    [31]
    [32]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411

    [33]
    [34]
    [35]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano. Lett. 7 1469

    [36]
    [37]

    Areshkin D 2007 Nano. Lett. 7 3253

    [38]
    [39]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [40]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [41]
    [42]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 205429

    [43]
    [44]
    [45]

    Rigo V A, Martins T B, da Silva A J R, Fazzio A, Miwa R H 2009 Phys. Rev. B 79 075435

    [46]

    Vanin M, Gath J, Thygesen K S, Jacobsen K W 2010 Phys. Rev. B 82 195411

    [47]
    [48]
    [49]

    Wu W Z, Zhang Z H, Lu P, Guo W L 2010 Phys. Rev. B 82 085425

    [50]

    Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L, Zeng Z 2009 Appl. Phy. Lett. 95 123109

    [51]
    [52]
    [53]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phy. Lett. 96 203112

    [54]
    [55]

    Kresse G J D 1999 Phys. Rev. B 59 1758

    [56]

    Perdew J 1996 Phys. Rev. Lett. 77 3865

    [57]
    [58]

    Lang N, Avouris P O 1998 Phys. Rev. Lett. 81 3515

    [59]
    [60]
    [61]

    Pitzer K 1959 Adv. Chem. Phys. 2 59

    [62]
    [63]

    Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427

    [64]
    [65]

    Kawai T, Miyamoto Y,Sugino O, Koga Y 2000 Phys. Rev. B 62 16349

    [66]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [67]
  • [1]

    Yuan J M, Huang Y Q 2009 Journal of Molecular Structure: THEOCHEM 915 63

    [2]
    [3]

    Yuan J M, Huang Y Q 2010 Journal of Molecular Structure: THEOCHEM 942 88

    [4]

    Mao Y L, Stocks G M, Zhong J X 2010 New J. Phys. 12 033046

    [5]
    [6]
    [7]

    Mao Y L, Zhong J X 2009 New J. Phys. 11 093002

    [8]
    [9]

    Mao Y L, Zhong J X 2008 Nanotechnology 19 205708

    [10]

    Mao Y L, Yuan J M, Zhong J X 2008 J. Phys.: Condens. Matter 20 115209

    [11]
    [12]
    [13]

    Zhang W, Yang R, Zhao Y, Duan S Q, Zhang P, Ulloa S E 2010 Phys. Rev. B 81 214202

    [14]
    [15]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞、童国平、蒋永进 2009 58 8537]

    [16]

    Pan H Z, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲、徐 明、陈 丽、孙媛媛、王永龙 2010 59 6443]

    [17]
    [18]
    [19]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009 58 7156]

    [20]
    [21]

    Cao R G,Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根、王 音、林正喆、明 辰、庄 军、宁西京 2010 59 6438]

    [22]
    [23]

    Chen L N, Ma S S, Ouyang F P,Wu X Z, Xiao J, Xu H 2010 Chin. Phys. B 19 097301

    [24]
    [25]

    Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平、徐 慧、魏 辰 2008 57 1073]

    [26]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L Li 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲、谭振兵、马 丽、陈 军、杨 帆、屈凡明、刘广同、杨海方、杨昌黎、吕 力 2009 58 5726]

    [27]
    [28]
    [29]

    Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G, Gao H J 2009 Chin. Phys. B 18 3008

    [30]

    Katsunori W, Mitsutaka F, Hiroshi A, Manfred S 1999 Phys. Rev. B 59 8271

    [31]
    [32]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411

    [33]
    [34]
    [35]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano. Lett. 7 1469

    [36]
    [37]

    Areshkin D 2007 Nano. Lett. 7 3253

    [38]
    [39]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [40]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [41]
    [42]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 205429

    [43]
    [44]
    [45]

    Rigo V A, Martins T B, da Silva A J R, Fazzio A, Miwa R H 2009 Phys. Rev. B 79 075435

    [46]

    Vanin M, Gath J, Thygesen K S, Jacobsen K W 2010 Phys. Rev. B 82 195411

    [47]
    [48]
    [49]

    Wu W Z, Zhang Z H, Lu P, Guo W L 2010 Phys. Rev. B 82 085425

    [50]

    Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L, Zeng Z 2009 Appl. Phy. Lett. 95 123109

    [51]
    [52]
    [53]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phy. Lett. 96 203112

    [54]
    [55]

    Kresse G J D 1999 Phys. Rev. B 59 1758

    [56]

    Perdew J 1996 Phys. Rev. Lett. 77 3865

    [57]
    [58]

    Lang N, Avouris P O 1998 Phys. Rev. Lett. 81 3515

    [59]
    [60]
    [61]

    Pitzer K 1959 Adv. Chem. Phys. 2 59

    [62]
    [63]

    Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427

    [64]
    [65]

    Kawai T, Miyamoto Y,Sugino O, Koga Y 2000 Phys. Rev. B 62 16349

    [66]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [67]
  • [1] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究.  , 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [2] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究.  , 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [4] 刘慧英, 张秀钦, 方艺梅, 朱梓忠. T型石墨烯及其衍生物的结构与电子特性.  , 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [5] 余志强, 张昌华, 郎建勋. P掺杂硅纳米管电子结构与光学性质的研究.  , 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [6] 吴江滨, 张昕, 谭平恒, 冯志红, 李佳. 旋转双层石墨烯的电子结构.  , 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [7] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究.  , 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [8] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究.  , 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [9] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性.  , 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [10] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究.  , 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [11] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [12] 欧阳方平, 徐慧, 林峰. 双空位缺陷石墨纳米带的电子结构和输运性质研究.  , 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [13] 金子飞, 童国平, 蒋永进. 非近邻跳跃对扶手椅型石墨烯纳米带电子结构的影响.  , 2009, 58(12): 8537-8543. doi: 10.7498/aps.58.8537
    [14] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究.  , 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
    [15] 刘君民, 孙立忠, 陈元平, 张凯旺, 袁辉球, 钟建新. 镧铱硅电子结构与成键机理的第一性原理研究.  , 2009, 58(11): 7826-7832. doi: 10.7498/aps.58.7826
    [16] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究.  , 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [17] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响.  , 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [18] 刘海兰, 顾 牡, 张 睿, 徐荣昆, 黎光武, 欧阳晓平. CuI晶体缺陷态电子结构及其施主-受主对发光机理的研究.  , 2006, 55(12): 6574-6579. doi: 10.7498/aps.55.6574
    [19] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析.  , 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [20] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究.  , 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
计量
  • 文章访问数:  10476
  • PDF下载量:  1684
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-08
  • 修回日期:  2010-12-02
  • 刊出日期:  2011-05-05

/

返回文章
返回
Baidu
map