-
基于密度泛函理论的第一性原理计算方法,研究了宽度N=8的边缘氢化和非氢化条带的结构和电子性质. 研究表明,扶手形无氢化石墨纳米条带的边缘碳原子是以三重键相互结合,它在边缘的成键强度比氢化时要高,具有更强的化学活性,可作为纳米化学传感器的基础材料. 能带结构计算表明,无论是扶手形条带还是锯齿形条带,它们都是具有带隙的半导体,且无氢化条带的带隙要比氢化的条带带隙宽度大,氢化对于条带的电子性质具有显著修饰作用. 通过锯齿形石墨纳米条带顺磁性、铁磁性和反铁磁性的计算,发现反铁磁的状态最稳定,并且边缘磁性最强,这有利于条带在自旋电子器件中的应用.Based on density functional theory and first-principles method, we investigate the structure and the electronic property of graphene nanoribbion with width N=8 and with or without hydrogen saturation on their edge. Our results show that the carbon atoms on the edge of armchair graphene nanoribbon without the hydrogen saturation are bonded together by triple bonding, which is stronger and more sensitive than that in the case of hydrogen saturation. This type of graphene nanoribbon can serve as a kind of basic material for nano-sensor. Our band structure calculations indicate that both armchair and zigzag nanoribbions are of semiconductor possessing an energy gap. Furthermore, the energy gap of nanoribbon without hydrogen saturation is larger than that with hydrogen saturation, which implies that hydrogen saturation has distinct decoration to the property of the nanoribbon. By the calculation of the paramagnetism, ferromagnetism and anti-ferromagnetism states of the zigzag graphene nanoribbon, we find that anti-ferromagnetism state is the most stable among them, and its magnetism on the edge is strongest, which is suitable for the application in spinelectronics.
-
Keywords:
- graphene nanoribbon /
- bonding mechanism /
- electronic structure /
- spin distribution
[1] Yuan J M, Huang Y Q 2009 Journal of Molecular Structure: THEOCHEM 915 63
[2] [3] Yuan J M, Huang Y Q 2010 Journal of Molecular Structure: THEOCHEM 942 88
[4] Mao Y L, Stocks G M, Zhong J X 2010 New J. Phys. 12 033046
[5] [6] [7] Mao Y L, Zhong J X 2009 New J. Phys. 11 093002
[8] [9] Mao Y L, Zhong J X 2008 Nanotechnology 19 205708
[10] Mao Y L, Yuan J M, Zhong J X 2008 J. Phys.: Condens. Matter 20 115209
[11] [12] [13] Zhang W, Yang R, Zhao Y, Duan S Q, Zhang P, Ulloa S E 2010 Phys. Rev. B 81 214202
[14] [15] Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞、童国平、蒋永进 2009 58 8537]
[16] Pan H Z, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲、徐 明、陈 丽、孙媛媛、王永龙 2010 59 6443]
[17] [18] [19] Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009 58 7156]
[20] [21] Cao R G,Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根、王 音、林正喆、明 辰、庄 军、宁西京 2010 59 6438]
[22] [23] Chen L N, Ma S S, Ouyang F P,Wu X Z, Xiao J, Xu H 2010 Chin. Phys. B 19 097301
[24] [25] Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平、徐 慧、魏 辰 2008 57 1073]
[26] Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L Li 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲、谭振兵、马 丽、陈 军、杨 帆、屈凡明、刘广同、杨海方、杨昌黎、吕 力 2009 58 5726]
[27] [28] [29] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G, Gao H J 2009 Chin. Phys. B 18 3008
[30] Katsunori W, Mitsutaka F, Hiroshi A, Manfred S 1999 Phys. Rev. B 59 8271
[31] [32] Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411
[33] [34] [35] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano. Lett. 7 1469
[36] [37] Areshkin D 2007 Nano. Lett. 7 3253
[38] [39] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[40] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
[41] [42] Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 205429
[43] [44] [45] Rigo V A, Martins T B, da Silva A J R, Fazzio A, Miwa R H 2009 Phys. Rev. B 79 075435
[46] Vanin M, Gath J, Thygesen K S, Jacobsen K W 2010 Phys. Rev. B 82 195411
[47] [48] [49] Wu W Z, Zhang Z H, Lu P, Guo W L 2010 Phys. Rev. B 82 085425
[50] Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L, Zeng Z 2009 Appl. Phy. Lett. 95 123109
[51] [52] [53] Evans W J, Hu L, Keblinski P 2010 Appl. Phy. Lett. 96 203112
[54] [55] Kresse G J D 1999 Phys. Rev. B 59 1758
[56] Perdew J 1996 Phys. Rev. Lett. 77 3865
[57] [58] Lang N, Avouris P O 1998 Phys. Rev. Lett. 81 3515
[59] [60] [61] Pitzer K 1959 Adv. Chem. Phys. 2 59
[62] [63] Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427
[64] [65] Kawai T, Miyamoto Y,Sugino O, Koga Y 2000 Phys. Rev. B 62 16349
[66] Lee G, Cho K 2009 Phys. Rev. B 79 165440
[67] -
[1] Yuan J M, Huang Y Q 2009 Journal of Molecular Structure: THEOCHEM 915 63
[2] [3] Yuan J M, Huang Y Q 2010 Journal of Molecular Structure: THEOCHEM 942 88
[4] Mao Y L, Stocks G M, Zhong J X 2010 New J. Phys. 12 033046
[5] [6] [7] Mao Y L, Zhong J X 2009 New J. Phys. 11 093002
[8] [9] Mao Y L, Zhong J X 2008 Nanotechnology 19 205708
[10] Mao Y L, Yuan J M, Zhong J X 2008 J. Phys.: Condens. Matter 20 115209
[11] [12] [13] Zhang W, Yang R, Zhao Y, Duan S Q, Zhang P, Ulloa S E 2010 Phys. Rev. B 81 214202
[14] [15] Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞、童国平、蒋永进 2009 58 8537]
[16] Pan H Z, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲、徐 明、陈 丽、孙媛媛、王永龙 2010 59 6443]
[17] [18] [19] Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009 58 7156]
[20] [21] Cao R G,Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根、王 音、林正喆、明 辰、庄 军、宁西京 2010 59 6438]
[22] [23] Chen L N, Ma S S, Ouyang F P,Wu X Z, Xiao J, Xu H 2010 Chin. Phys. B 19 097301
[24] [25] Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平、徐 慧、魏 辰 2008 57 1073]
[26] Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L Li 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲、谭振兵、马 丽、陈 军、杨 帆、屈凡明、刘广同、杨海方、杨昌黎、吕 力 2009 58 5726]
[27] [28] [29] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G, Gao H J 2009 Chin. Phys. B 18 3008
[30] Katsunori W, Mitsutaka F, Hiroshi A, Manfred S 1999 Phys. Rev. B 59 8271
[31] [32] Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411
[33] [34] [35] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano. Lett. 7 1469
[36] [37] Areshkin D 2007 Nano. Lett. 7 3253
[38] [39] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[40] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
[41] [42] Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 205429
[43] [44] [45] Rigo V A, Martins T B, da Silva A J R, Fazzio A, Miwa R H 2009 Phys. Rev. B 79 075435
[46] Vanin M, Gath J, Thygesen K S, Jacobsen K W 2010 Phys. Rev. B 82 195411
[47] [48] [49] Wu W Z, Zhang Z H, Lu P, Guo W L 2010 Phys. Rev. B 82 085425
[50] Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L, Zeng Z 2009 Appl. Phy. Lett. 95 123109
[51] [52] [53] Evans W J, Hu L, Keblinski P 2010 Appl. Phy. Lett. 96 203112
[54] [55] Kresse G J D 1999 Phys. Rev. B 59 1758
[56] Perdew J 1996 Phys. Rev. Lett. 77 3865
[57] [58] Lang N, Avouris P O 1998 Phys. Rev. Lett. 81 3515
[59] [60] [61] Pitzer K 1959 Adv. Chem. Phys. 2 59
[62] [63] Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427
[64] [65] Kawai T, Miyamoto Y,Sugino O, Koga Y 2000 Phys. Rev. B 62 16349
[66] Lee G, Cho K 2009 Phys. Rev. B 79 165440
[67]
计量
- 文章访问数: 10476
- PDF下载量: 1684
- 被引次数: 0