搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体性质对磁泡的影响

彭国良 张俊杰 王仲琦 任泽平 谢海燕 杜太焦

引用本文:
Citation:

等离子体性质对磁泡的影响

彭国良, 张俊杰, 王仲琦, 任泽平, 谢海燕, 杜太焦

Effect of plasma properties on magnetic bubbles

Peng Guo-Liang, Zhang Jun-Jie, Wang Zhong-Qi, Ren Ze-Ping, Xie Hai-Yan, Du Tai-Jiao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用三维混合模拟程序计算了大量超热碎片离子在低密度背景等离子体中爆炸膨胀的过程. 通过定量计算磁泡的变化过程和磁泡对碎片云运动的约束效果, 分析了背景等离子体电荷密度、背景离子原子量、碎片离子荷质比等参数对磁泡的影响. 计算结果表明, 背景电荷密度对磁泡和碎片云的运动有重要影响. 在碎片云扩张早期, 背景离子原子量对磁泡扩张影响较小, 但对后期碎片云的运动有一定影响. 当碎片离子荷质比较小时, 离子回旋半径大于磁泡半径, 此时磁泡半径较小, 且磁泡无法约束碎片云. 当碎片离子荷质比较大时, 离子回旋半径小于磁泡半径, 如果此时背景电荷密度较低, 磁泡和碎片云的早期扩张几乎不受碎片离子荷质比影响, 但对系统后续演化有一定影响, 如果此时背景电荷密度较大, 碎片离子荷质比对磁泡和碎片云的运动有较大影响.
    In this work, a three-dimensional hybrid simulation program is used to investigate the process of the explosion and expansion of a large number of thermal debris ions in a low density background plasma. By quantitatively calculating the variation of the magnetic bubble and the bubble constraint in the motion of the debris cloud, studied are the influences of the background plasma charge density, the background ion atomic weight, and the charge-mass ratio of the fragment ion on the magnetic bubble. The results show that the background charge density has an important effect on the motion of the bubble and debris cloud. In the early stage of the debris cloud expansion, the background ion atomic weight has little effect on the bubble expansion, but it affects the movement of debris cloud at a later time. When the charge-mass ratio of the debris ion is small, the radius of the ion gyration is larger than the bubble radius, and the bubble radius is small so that it cannot restrain the debris cloud. When the charge-mass ratio of the debris ion is large, the radius of the ion gyration is smaller than the bubble radius. If the background charge density is low in this condition, the early expansion of the bubble and the debris cloud are slightly affected by the charge-mass ratio of the fragment ions, and only the subsequent evolution of the system is influenced. If the background charge density is large in this condition, the charge-mass ratio of the fragment ion has a prominent influence on the motion of the bubble and the debris cloud.
      通信作者: 彭国良, pgl02@163.com
      Corresponding author: Peng Guo-Liang, pgl02@163.com
    [1]

    Gilbert J, Kappenman J, Radasky W, Savage E 2010 The Late-Time (E3) High-Altitude Electromagnetic Pulse (HEMP) and its Impact on the U. S. Power Grid (Oak Ridge National Laboratory: HEMP TAPS/HEMP-PC Audit Report) Meta-R-321

    [2]

    Valenzuela A, Haerendel G, Föppl H, Melzner F, Neuss H, Rieger E, Stöcker J, Bauer O, Höfner H, Loidl J 1986 Nature 320 700Google Scholar

    [3]

    Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar

    [4]

    Siebert K, Witt E 2019 Nominal Waveforms for Late-Time High-Altitude Electromagnetic Pulse (Applied Research Associates Inc.) DTRA-TR-19-41

    [5]

    彭国良, 张俊杰 2021 70 180703Google Scholar

    Peng G L, Zhang J J 2021 Acta Phys. Sin. 70 180703Google Scholar

    [6]

    Winske D, Huba J D, Niemann C, Le A 2019 Front. Astron. Space Sci. 5 51Google Scholar

    [7]

    Berezin Y A, Dudnikova G I, Fedoruk M P, Vshivkov V A 1998 Int. J. Comp. Fluid D 10 117Google Scholar

    [8]

    Ripin B H, Huba J D, McLean E A, Manka C K, Peyser T, Burris H R 1993 Phys. Fluids 5 3491Google Scholar

    [9]

    Gisler G, Lemons D S 1989 J. Geophys. Res. 94 10145Google Scholar

    [10]

    Winske D 1991 Simulations of HANE/VHANE Dynamics (Defense Nuclear Agency) AD-A243198

    [11]

    Zakharov Y P 2003 IEEE Trans. Plasma Sci. 31 1243Google Scholar

    [12]

    Yamauchi K, Ohsawa Y 2007 Phys. Plasmas 14 053110Google Scholar

    [13]

    Winske D, Gary S P 2007 J. Geophys. Res. 112 A10303Google Scholar

    [14]

    Hewett D W, Brecht S H, Larson D J 2011 J. Geophys. Res. 116 A11310

    [15]

    Peng G L, Zhang J J, Chen J N 2021 Phys. Fluids 33 076602Google Scholar

    [16]

    Sergeivich B A 2015 Ph. D. Dissertation (Berkeley: University of California)

    [17]

    Harned D S 1982 J. Comp. Phys. 47 452Google Scholar

    [18]

    Brecht S H, Thomas V A 1988 Comp. Phys. Commun. 48 135Google Scholar

    [19]

    Lipatov A S 2002 The Hybrid Multiscale Simulation Technology (Berlin Heidelberg: Springer)

    [20]

    傅竹风, 胡友秋 1994 空间等离子体数值模拟 (合肥: 安徽科学技术出版社) 第6页

    Fu Z F, Hu Y Q 1994 Simulation of Space Plasma (Hefei: Anhui Science Press) p6 (in Chinese)

    [21]

    郑开春 2009 等离子体物理 (北京: 北京大学出版社) 第26页

    Zheng K C 2009 Plasma Physics (Beijing: Peking University Press) p26 (in Chinese)

    [22]

    Dedner A, Kemm F, Kroner D, Munz C. D, Schnitzer T, Wesenberg M 2002 J. Comp. Phys. 175 645Google Scholar

    [23]

    Christopher G C Jr 2007 Ph. D. Dissertation (Monterey, California: Naval Postgraduate School)

    [24]

    Mignone A, Bodo G, Vaida B, Mattia G 2018 Astrophys. J. 859 13Google Scholar

    [25]

    Mignone A 2014 J. Comp. Phys. 270 784Google Scholar

    [26]

    Toth G, Odstrcil D 1996 J. Comp. Phys. 128 82Google Scholar

  • 图 1  磁场误差随时间的变化

    Fig. 1.  Variation of magnet field variables error with time.

    图 2  粒子速度误差随时间的变化

    Fig. 2.  Variation of particles velocity error with time.

    图 3  磁泡云图 (a) 垂直于背景磁场的截面; (b) 平行于背景磁场的截面

    Fig. 3.  Magnetic bubbles contour: (a) Cross section perpendicular to background magnet; (b) cross section parallel to background magnet.

    图 4  不同背景电荷数密度下磁泡半径随时间的演化

    Fig. 4.  Magnetic bubbles radius vs. time under different background charge number density.

    图 5  归一化磁泡半径和碎片云半径随时间的变化 (a) N = 1 × 1010 m–3; (b) N = 1 × 1012 m–3

    Fig. 5.  Normalization debris radius and magnetic bubbles radius vs. time: (a) N = 1 × 1010 m–3; (b) N = 1 × 1012 m–3.

    图 6  不同背景离子原子量下磁泡半径随时间的变化 (a) N = 1 × 1010 m–3; (b) N = 1 × 1012 m–3

    Fig. 6.  Magnetic bubbles radius vs. time with different background ion atomic weight: (a) N = 1 × 1010 m–3; (b) N = 1 × 1012 m–3.

    图 7  N = 1 × 1010 m–3时不同背景离子原子量的碎片云半径随时间的变化 (a) Ravg; (b) Rd

    Fig. 7.  Debris radius vs. time at N = 1 × 1010 m–3 under different background ion atomic weight: (a) Ravg; (b) Rd.

    图 8  N = 1 × 1012 m–3时碎片离子半径随时间的变化 (a) Ravg; (b) Rd

    Fig. 8.  Debris radius vs. time at N = 1 × 1012 m–3 under different background ion atomic weight: (a) Ravg; (b) Rd.

    图 9  不同碎片离子原子量下磁泡半径随时间的变化 (a) N = 1 × 1010 m–3; (b) N = 1 × 1012 m–3

    Fig. 9.  Magnetic bubbles radius vs. time under different debris ion atomic weight: (a) N = 1 × 1010 m–3; (b) N = 1 × 1012 m–3.

    图 10  N = 1010 m–3时不同碎片离子原子量下碎片云半径随时间的变化 (a) Ravg; (b) Rd

    Fig. 10.  Debris radius vs. time at N = 1010 m–3 under different debris ion atomic weight: (a) Ravg; (b) Rd.

    图 11  N = 1 × 1012 m–3时不同碎片离子原子量下碎片云半径随时间的变化 (a) Ravg; (b) Rd

    Fig. 11.  Debris radius vs. time at N = 1 × 1012 m–3 under different debris ion atomic weight: (a) Ravg; (b) Rd.

    图 12  不同碎片离子原子量下归一化碎片云半径和磁泡半径随时间的变化 (a) N = 1 × 1010 m–3; (b) N = 1 × 1012 m–3

    Fig. 12.  Normalization debris radius and magnetic bubbles radius vs. time under different debris ion atomic weight: (a) N = 1 × 1010 m–3; (b) N = 1 × 1012 m–3.

    Baidu
  • [1]

    Gilbert J, Kappenman J, Radasky W, Savage E 2010 The Late-Time (E3) High-Altitude Electromagnetic Pulse (HEMP) and its Impact on the U. S. Power Grid (Oak Ridge National Laboratory: HEMP TAPS/HEMP-PC Audit Report) Meta-R-321

    [2]

    Valenzuela A, Haerendel G, Föppl H, Melzner F, Neuss H, Rieger E, Stöcker J, Bauer O, Höfner H, Loidl J 1986 Nature 320 700Google Scholar

    [3]

    Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar

    [4]

    Siebert K, Witt E 2019 Nominal Waveforms for Late-Time High-Altitude Electromagnetic Pulse (Applied Research Associates Inc.) DTRA-TR-19-41

    [5]

    彭国良, 张俊杰 2021 70 180703Google Scholar

    Peng G L, Zhang J J 2021 Acta Phys. Sin. 70 180703Google Scholar

    [6]

    Winske D, Huba J D, Niemann C, Le A 2019 Front. Astron. Space Sci. 5 51Google Scholar

    [7]

    Berezin Y A, Dudnikova G I, Fedoruk M P, Vshivkov V A 1998 Int. J. Comp. Fluid D 10 117Google Scholar

    [8]

    Ripin B H, Huba J D, McLean E A, Manka C K, Peyser T, Burris H R 1993 Phys. Fluids 5 3491Google Scholar

    [9]

    Gisler G, Lemons D S 1989 J. Geophys. Res. 94 10145Google Scholar

    [10]

    Winske D 1991 Simulations of HANE/VHANE Dynamics (Defense Nuclear Agency) AD-A243198

    [11]

    Zakharov Y P 2003 IEEE Trans. Plasma Sci. 31 1243Google Scholar

    [12]

    Yamauchi K, Ohsawa Y 2007 Phys. Plasmas 14 053110Google Scholar

    [13]

    Winske D, Gary S P 2007 J. Geophys. Res. 112 A10303Google Scholar

    [14]

    Hewett D W, Brecht S H, Larson D J 2011 J. Geophys. Res. 116 A11310

    [15]

    Peng G L, Zhang J J, Chen J N 2021 Phys. Fluids 33 076602Google Scholar

    [16]

    Sergeivich B A 2015 Ph. D. Dissertation (Berkeley: University of California)

    [17]

    Harned D S 1982 J. Comp. Phys. 47 452Google Scholar

    [18]

    Brecht S H, Thomas V A 1988 Comp. Phys. Commun. 48 135Google Scholar

    [19]

    Lipatov A S 2002 The Hybrid Multiscale Simulation Technology (Berlin Heidelberg: Springer)

    [20]

    傅竹风, 胡友秋 1994 空间等离子体数值模拟 (合肥: 安徽科学技术出版社) 第6页

    Fu Z F, Hu Y Q 1994 Simulation of Space Plasma (Hefei: Anhui Science Press) p6 (in Chinese)

    [21]

    郑开春 2009 等离子体物理 (北京: 北京大学出版社) 第26页

    Zheng K C 2009 Plasma Physics (Beijing: Peking University Press) p26 (in Chinese)

    [22]

    Dedner A, Kemm F, Kroner D, Munz C. D, Schnitzer T, Wesenberg M 2002 J. Comp. Phys. 175 645Google Scholar

    [23]

    Christopher G C Jr 2007 Ph. D. Dissertation (Monterey, California: Naval Postgraduate School)

    [24]

    Mignone A, Bodo G, Vaida B, Mattia G 2018 Astrophys. J. 859 13Google Scholar

    [25]

    Mignone A 2014 J. Comp. Phys. 270 784Google Scholar

    [26]

    Toth G, Odstrcil D 1996 J. Comp. Phys. 128 82Google Scholar

计量
  • 文章访问数:  3898
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-07-30
  • 上网日期:  2022-10-28
  • 刊出日期:  2022-11-05

/

返回文章
返回
Baidu
map