-
应用泛函积分方法推导了量子Thirring模型中的传播子和有效势,计算了二维点物质黑洞和dilaton黑洞模型中费米物质的能量密度涨落 ,在相同的物理条件下,发现dilaton黑洞外费米物质的能量密度涨较大.
-
关键词:
- 泛函积分 /
- Thirring模型 /
- 黑洞 /
- 能量密度涨落
In this paper, the propagator and the effective potential in quantum Thirring model are derived by using the functional integral method, and the energy density fluctuations for coupled Fermi matter are calculated in two-dimensional point matter black hole and dilaton black hole models separately. We find that energy density fluctuation outside dilaton black hole is stronger under the same physical conditions.-
Keywords:
- functional integrals /
- Thirring model /
- black hole /
- energy density fluctuations
[1] Bekenstein J D 1973 Phys. Rew. D 7 2333
[2] Gibbons G W,Hawking S W 1977 Phys. Rew. D 15 2752
[3] t’Hooft G 1985 Nucl. Phys. B 256 727
[4] Zhao Z, Zhu J Y 1999 Acta Phys. Sin. 48 1558 (in Chinese) [赵 峥、 朱建阳 1999 48 1558]
[5] Luo Z J, Zhu J Y 1999 Acta Phys. Sin. 48 395 (in Chinese) [罗智坚、朱建阳 1999 48 395]
[6] Shen Y G, Chen D M 1999 Acta Astron. Sin. 40 38 (in Chinese) [沈有根、 陈大明 1999 天文学报 40 38]
[7] Popov V N 1983 Functional Integrals in Quantum Field Theory and Statistical Physics (Dordrecht: Reidel Publishing Company) p1
[8] Popov V N 1987 Functional Integrals and Collective Excitations (Cambridge: Cambridge University Press) p3
[9] Yan J 2008 Commun. Theor. Phys. 50 893
[10] Yan J 2007 Commun. Theor. Phys. 48 653
[11] He T M,Fan J H,Wang Y J 2008 Chin. Phys. B 17 2321
[12] Tian G H , Wang S K, Zhao Z 2006 Chin. Phys. 15 1430
[13] Mi L Q, Li Z H 2006 Chin. Phys. 15 1184
[14] Mann R, Shiekh A, Tarasov L 1990 Nucl. Phys. B 341 134
[15] Mann R 1993 Phys. Rew. D 47 4438
[16] Kersting N, Yan J 2008 Mod.Phys.Lett. A 23 3341
[17] Yan J 2009 Commun. Theor. Phys. 52 445
[18] Zelnikov M I, Vasiliev E A 2005 Int. J. Mod. Phys. A 20 4217
[19] Vasiliev E A 2007 Phys. Rev. D 76 103532
[20] Liu L, Pei S Y 2006 Acta Phys. Sin. 55 4980 (in Chinese) [刘 辽、裴寿镛 2006 55 4980]
-
[1] Bekenstein J D 1973 Phys. Rew. D 7 2333
[2] Gibbons G W,Hawking S W 1977 Phys. Rew. D 15 2752
[3] t’Hooft G 1985 Nucl. Phys. B 256 727
[4] Zhao Z, Zhu J Y 1999 Acta Phys. Sin. 48 1558 (in Chinese) [赵 峥、 朱建阳 1999 48 1558]
[5] Luo Z J, Zhu J Y 1999 Acta Phys. Sin. 48 395 (in Chinese) [罗智坚、朱建阳 1999 48 395]
[6] Shen Y G, Chen D M 1999 Acta Astron. Sin. 40 38 (in Chinese) [沈有根、 陈大明 1999 天文学报 40 38]
[7] Popov V N 1983 Functional Integrals in Quantum Field Theory and Statistical Physics (Dordrecht: Reidel Publishing Company) p1
[8] Popov V N 1987 Functional Integrals and Collective Excitations (Cambridge: Cambridge University Press) p3
[9] Yan J 2008 Commun. Theor. Phys. 50 893
[10] Yan J 2007 Commun. Theor. Phys. 48 653
[11] He T M,Fan J H,Wang Y J 2008 Chin. Phys. B 17 2321
[12] Tian G H , Wang S K, Zhao Z 2006 Chin. Phys. 15 1430
[13] Mi L Q, Li Z H 2006 Chin. Phys. 15 1184
[14] Mann R, Shiekh A, Tarasov L 1990 Nucl. Phys. B 341 134
[15] Mann R 1993 Phys. Rew. D 47 4438
[16] Kersting N, Yan J 2008 Mod.Phys.Lett. A 23 3341
[17] Yan J 2009 Commun. Theor. Phys. 52 445
[18] Zelnikov M I, Vasiliev E A 2005 Int. J. Mod. Phys. A 20 4217
[19] Vasiliev E A 2007 Phys. Rev. D 76 103532
[20] Liu L, Pei S Y 2006 Acta Phys. Sin. 55 4980 (in Chinese) [刘 辽、裴寿镛 2006 55 4980]
计量
- 文章访问数: 8954
- PDF下载量: 885
- 被引次数: 0