-
冻干法处理过的药品瓶中残存的水汽(H2O)是药品变质的主要影响因素之一, 如何快速准确地测量瓶中的水汽浓度及压力, 是检测药瓶是否泄漏的关键. 本文报道了利用1.39 m半导体激光器作为光源, 结合波长调制吸收光谱技术, 实现了对密闭玻璃容器(药瓶)中水汽浓度及压力的探测, 并通过转台模拟生产线对系统在动态条件下的性能进行了测试. 研究结果表明, 在0.2%-12%的H2O浓度范围内真实值与测量值之间的相关度和标准偏差为0.9978 和4.81%, 在0.1-100 atm (1 atm=1.01325105 Pa)的压力范围内两者之间的相关度和标准偏差为0.982和5.6%, 系统对应的压力及浓度的最低检测限约为2.5 Torr (1 Torr=1.33102 Pa)和400 ppm. 通过利用转台以及Labview编写的快速在线处理软件进行了动态条件下的测试, 一分钟可以处理300个左右的药瓶, 可以很好地满足快速实时探测的要求. 该方案可以直接应用于药瓶在线检测, 并且使用2台激光器可以实现多组分同时探测分析(如H2O、氧气等).
-
关键词:
- 可调谐半导体吸收光谱技术 /
- 密闭玻璃容器 /
- 浓度 /
- 压力
Water vapor in a sealed glass container processed by lyophilization is a main factor for drug metamorphism. The key to knowing whether there is a leakage occurring in the container is how to detect water concentration and pressure in the sealed container quickly and accurately. In the present paper, a strong absorption line of H2O near 1.39 m is carefully selected to avoid the interference of neighboring transitions. A distributed feedback laser semiconductor laser near 1.396 m is employed as the light source with a power of 10 mW and typical linewidth of 2 MHz by combining with tunable diode laser absorption spectroscopy technique, the concentrations and pressures of water vapor in the sealed container are successfully detected under static condition and dynamic condition. In order to isolate the interference absorption from the ambient water vapor in the air, a differential absorption technique is employed in our experiment, which makes our system simpler than routine nitrogen purging based system. During the measurement, the second harmonic signal is utilized for measuring the concentration and pressure, the concentration is retrieved by the peak value while the pressure is calculated by the full width at half maximum. For the measurement of concentration ranging from 0.2% to 12%, the linear correlation coefficient between the real values and the inversed values and the standard deviation ratio are 0.9978 and 4.81%, respectively. For the measurement of pressure, the correlation coefficient and standard deviation ratio are 0.982 and 5.6%, respectively. The minimum detection limits of the concentration and pressure are 400 ppm and 2.5 Torr, respectively. Moreover, in order to test the system for on-line applications in the pharmaceutical industry, measurements are performed in vials which are placed on a rotary stage to simulate the process of the assemble line. In particular, the amplitude of sinuous signal without absorption is used as the reference signal to validate whether the vial is in the optical path. Besides, this amplitude is also utilized to normalize the laser power. The results show that our system can handle about 300 bottles in one minute, which can meet well the requirements for rapid and real-time detections. This system can be applied directly to the medicine bottle on-line detection, and multicomponent detection can also be realized by employing two or more lasers (e.g. H2O, oxygen, etc.). In the future, we plan to build a system for detecting water vapor and oxygen simultaneously, as oxygen is another import indicator for drug metamorphism.-
Keywords:
- tunable diode laser absorption spectroscopy /
- sterile glass container /
- concentration /
- pressure
[1] Gun J, Zhao L C 2011 Gansu Med. J. 30 50 (in Chinese) [郭军, 赵良存 2011 甘肃医药 30 50]
[2] Pikal M J, Shah S 1997 PDA J. Pharm. Sci. Tech. 51 17
[3] Schneid S C, Gieseler H, Kessler W J, Luthra S A, Pika M J 2011 AAPS Pharm. Sci. Tech. 12 379
[4] Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 53301 (in Chinese) [张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 64 53301]
[5] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]
[6] Geng H, Liu J G, Zhang Y J, Kan R F, Xu Z Y, Yao L, Ruan J 2014 Acta Phys. Sin. 63 043301 (in Chinese) [耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊 2014 63 043301]
[7] Wang H, Cao Z S, Wang Z Q, Wang L S, Gao W, Zhang W J, Gao X M 2010 Spectrosc. Spect. Anal. 30 1161 (in Chinese) [王欢, 曹振松, 王竹青, 汪六三, 高伟, 张为俊, 高晓明 2010 光谱学与光谱分析 30 1161]
[8] Cai T D, Wang G S, Chen W D, Zhang W J, Gao X M 2009 Spectro sc. Spect. Anal. 29 1463 (in Chinese) [蔡廷栋, 王贵师, 陈卫东, 张为俊, 高晓明 2009 光谱学与光谱分析 29 1463]
[9] Gieseler H, Kessler W J, Finson M, Davis S J, Mulhall P A, Bons V, Debo D J, Pikal M J 2007 Pharm. Technol. 96 1776
[10] Cai T D, Gao G Z, Liu Y 2013 Appl. Opt. 52 7682
[11] Kuu W Y, Nail S L, Sacha G 2009 J. Pharm. Sci. 98 1136
[12] Cai T D, Wang G S, Cao Z S, Zhang W J, Gao X M 2014 Opt. Laser. Eng. 58 48
[13] Cassidy D T, Reid J 1982 Appl. Opt. 21 1185
[14] Mount G H, Rumburg B, Havig J, Lamb B, Westberg H, Yonge D, Johnson K Kincaid R 2002 Atmos. Enviro. 36 1799
[15] Sun X Q, Ewing D J, Ma L 2012 Particuology 10 9
[16] Corsi C, D'Amato F, de Rosa M, Modugno G 1999 Eur. Phys. J. D 6 327
-
[1] Gun J, Zhao L C 2011 Gansu Med. J. 30 50 (in Chinese) [郭军, 赵良存 2011 甘肃医药 30 50]
[2] Pikal M J, Shah S 1997 PDA J. Pharm. Sci. Tech. 51 17
[3] Schneid S C, Gieseler H, Kessler W J, Luthra S A, Pika M J 2011 AAPS Pharm. Sci. Tech. 12 379
[4] Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 53301 (in Chinese) [张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 64 53301]
[5] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]
[6] Geng H, Liu J G, Zhang Y J, Kan R F, Xu Z Y, Yao L, Ruan J 2014 Acta Phys. Sin. 63 043301 (in Chinese) [耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊 2014 63 043301]
[7] Wang H, Cao Z S, Wang Z Q, Wang L S, Gao W, Zhang W J, Gao X M 2010 Spectrosc. Spect. Anal. 30 1161 (in Chinese) [王欢, 曹振松, 王竹青, 汪六三, 高伟, 张为俊, 高晓明 2010 光谱学与光谱分析 30 1161]
[8] Cai T D, Wang G S, Chen W D, Zhang W J, Gao X M 2009 Spectro sc. Spect. Anal. 29 1463 (in Chinese) [蔡廷栋, 王贵师, 陈卫东, 张为俊, 高晓明 2009 光谱学与光谱分析 29 1463]
[9] Gieseler H, Kessler W J, Finson M, Davis S J, Mulhall P A, Bons V, Debo D J, Pikal M J 2007 Pharm. Technol. 96 1776
[10] Cai T D, Gao G Z, Liu Y 2013 Appl. Opt. 52 7682
[11] Kuu W Y, Nail S L, Sacha G 2009 J. Pharm. Sci. 98 1136
[12] Cai T D, Wang G S, Cao Z S, Zhang W J, Gao X M 2014 Opt. Laser. Eng. 58 48
[13] Cassidy D T, Reid J 1982 Appl. Opt. 21 1185
[14] Mount G H, Rumburg B, Havig J, Lamb B, Westberg H, Yonge D, Johnson K Kincaid R 2002 Atmos. Enviro. 36 1799
[15] Sun X Q, Ewing D J, Ma L 2012 Particuology 10 9
[16] Corsi C, D'Amato F, de Rosa M, Modugno G 1999 Eur. Phys. J. D 6 327
计量
- 文章访问数: 6866
- PDF下载量: 237
- 被引次数: 0