-
绝缘颗粒系统的摩擦带电现象是一种普遍现象, 但至今仍未得到很好的认识. 月球及火星表面漂浮着大量尘埃颗粒, 这将严重影响探测设备的太阳能帆板、散热和观察系统等的正常工作. 近年来, 电帘除尘方法被认为是在月表进行尘埃防护的有效手段, 研究表明颗粒表面摩擦带电对月尘静电来源贡献最大, 因此正确理解颗粒摩擦带电的机理对分析尘埃颗粒的运动规律至关重要. 本文建立了一个基于高能态电子假定的分析模型来预测颗粒间的摩擦电荷分布. 计算了颗粒摩擦生电与颗粒粒度的依赖关系, 以及粒度范围对摩擦电荷产生的概率大小的影响. 揭示了电荷分布的一个上限, 并讨论了可能的原因. 对粒子碰撞过程中的电荷转移进行了粒子动力学模拟, 验证了理论预测结果.Triboelectrification in an insulative granular system is a common natural phenomenon, but until now it has not been well understood. The space on the moon or Mars is suffused by a large amount of fine dust. These tiny dust particles are so adhesive that they can easily stick to any exposed surfaces, which may provoke serious problems, such as reducing the efficiency of solar panels, and resulting in the thermal control failure and the false instrument readings. In recent years, dust removal by using an electrodynamic field is considered as an effective method to mitigate dust pollution. Research shows that the triboelectrification on the particle surface contributes most to the electrostatic source of lunar dust. Consequently, the study of the mechanism of triboelectrification is very important in removing dust particles. In this paper, an analytical model based on the high-energy electron hypothesis is developed to predict the triboelectric charge distribution among particles. The particle size dependence of the tribo-charge is obtained, and the influence of the size range on the tribo-charge probability is also demonstrated. An upper limit for the charge distribution is revealed, and its possible cause is discussed. The particle dynamics simulation is carried out to investigate the charge transfer during particle collisions, thereby verifying the prediction results obtained by theoretical analysis.
-
Keywords:
- triboelectrification /
- insulative granular system /
- high-energy state electron /
- particle dynamics simulation
[1] Gilbert J S, Lane S J, Koyaguchi T, Sparks R S J 1991 Nature 349 598Google Scholar
[2] Stow C D 1969 Weather 24 134Google Scholar
[3] Mills A A 1977 Nature 268 614
[4] Eden H F, Vonnegut B 1973 Science 180 962Google Scholar
[5] Calle C I, Mazumder M K, Immer C R, Buhler C R, Clements J S, Lundeen P, Chen A, Mantovani J G 2008 J. Phys. 142 012073
[6] Kawamoto H, Hasegawa N 2004 J. Imaging Sci. Techn. 48 404
[7] Watanabe H, Ghadiri M, Matsuyama T, Ding Y L, Pitt K G, Maruyama H, Matsusaka S, Masuda H 2007 Int. J. Pharm. 334 149Google Scholar
[8] Sickafoose A A, Colwell J E, HorãiNyi M, Robertson S 2001 J. Geophy. Research: Space Phys. 106 8343Google Scholar
[9] Lacks D J, Levandovsky A 2007 J. Electrost. 65 107Google Scholar
[10] Lacks D J, Duff N, Kumar S K 2008 Phys. Rev. Lett. 100 188305Google Scholar
[11] Forward K M, Lacks D J, Sankaran R M 2009 J. Geophys. Res-Space 114 A10109Google Scholar
[12] Hu W W, Li X, Zheng X J 2012 Eur. Phys. J. E 35 1Google Scholar
[13] Kok J F, Lacks D J 2009 Phys. Rev. E 79 051304Google Scholar
[14] Lowell J, Truscott W S 1986 J. Phys. D-Appl. Phys. 19 1281Google Scholar
[15] Duff N, Lacks D J 2008 J. Electrost. 66 51Google Scholar
[16] Zon R V, Cohen E G D 2006 J. Stat. Phys. 123 1Google Scholar
[17] Forward K M 2009 Ph. D. Dissertation (Ohio: Case Western Reserve University)
-
图 1 二维情形下碰撞前后颗粒高能态电子在接触面处发生转移转化为稳定低能态电子的过程(图中黑点为高能态电子, 黑圈为低能态电子)
Fig. 1. In the two-dimensional case the high-energy electrons of particles transfer to stable low-energy electrons at the interface before and after collision (the black dots are high energy electrons, the black circles are low energy electrons).
-
[1] Gilbert J S, Lane S J, Koyaguchi T, Sparks R S J 1991 Nature 349 598Google Scholar
[2] Stow C D 1969 Weather 24 134Google Scholar
[3] Mills A A 1977 Nature 268 614
[4] Eden H F, Vonnegut B 1973 Science 180 962Google Scholar
[5] Calle C I, Mazumder M K, Immer C R, Buhler C R, Clements J S, Lundeen P, Chen A, Mantovani J G 2008 J. Phys. 142 012073
[6] Kawamoto H, Hasegawa N 2004 J. Imaging Sci. Techn. 48 404
[7] Watanabe H, Ghadiri M, Matsuyama T, Ding Y L, Pitt K G, Maruyama H, Matsusaka S, Masuda H 2007 Int. J. Pharm. 334 149Google Scholar
[8] Sickafoose A A, Colwell J E, HorãiNyi M, Robertson S 2001 J. Geophy. Research: Space Phys. 106 8343Google Scholar
[9] Lacks D J, Levandovsky A 2007 J. Electrost. 65 107Google Scholar
[10] Lacks D J, Duff N, Kumar S K 2008 Phys. Rev. Lett. 100 188305Google Scholar
[11] Forward K M, Lacks D J, Sankaran R M 2009 J. Geophys. Res-Space 114 A10109Google Scholar
[12] Hu W W, Li X, Zheng X J 2012 Eur. Phys. J. E 35 1Google Scholar
[13] Kok J F, Lacks D J 2009 Phys. Rev. E 79 051304Google Scholar
[14] Lowell J, Truscott W S 1986 J. Phys. D-Appl. Phys. 19 1281Google Scholar
[15] Duff N, Lacks D J 2008 J. Electrost. 66 51Google Scholar
[16] Zon R V, Cohen E G D 2006 J. Stat. Phys. 123 1Google Scholar
[17] Forward K M 2009 Ph. D. Dissertation (Ohio: Case Western Reserve University)
计量
- 文章访问数: 4182
- PDF下载量: 90
- 被引次数: 0