-
甚高频激发的容性耦合等离子体由于离子通量和能量的相对独立可控而受到人们的关注. 本文采用朗缪尔探针诊断技术测量了40.68 MHz激发的容性耦合Ar等离子体的特性(如电子能量概率分布、电子温度和密度等)随宏观参量的演变情况. 实验结果表明, 电子能量概率分布随着气压的增加从双麦克斯韦分布逐步转变为单麦克斯韦分布并最终演变为Druyvesteyn分布, 而射频激发功率的增加促进了低能电子布居数的增强; 在从等离子体放电中心移向边界的过程中, 低能电子的布居数显著下降, 而高能电子的布居则有所上升; 放电极板间距的变化直接导致了等离子体中电子加热模式的转变. 另外, 我们也对等离子体中的高低能电子密度和温度的分配情况进行了讨论.
-
关键词:
- 朗缪尔探针诊断 /
- 电子能量概率分布函数 /
- 电子加热模式
Capacitively coupled plasma driven by a very high frequency power has attracted much attention due to its rather independent control of ion flux and energy. In this paper, Langmuir probe diagnostic technique is used to observe the evolution of plasma properties such as electron energy distribution function, electron temperature and density, etc. Our experiment is performed in capacitively coupled argon plasma driven by a 40.68 MHz frequency. Experimental results show that the electron energy probability function changes from bi-Maxwellian type to single-Maxwellian type and then to Druyvesteyn type with the increase of the discharge pressure. At a low gas pressure, the electron collisionless heating in bulk plasma leads to bi-Maxwellian type in electron energy possibility function (EEPF), which has a double temperatures structure in EEPF. As the gas pressure increases, the electrons with low energy are able to collide with the neutral species more frequently, thus they gain energies through collisional heating. Therefore, these electrons can overcome the dc ambipolar potential and the collisional heating becomes a main electron heating mechanism. Increasing the input power enhances the electron population with low energy. From the discharge center to the edge, electron population with low energy decreases clearly due to the dc ambipolar potential, and they are unable to reach an oscillating sheath where collisionless heating occurs. However, electron population with high energy is slightly increased. The result indicates that more uniform plasma can be achieved at a high gas pressure. Additionally, EEPFs are measured for different discharge gaps between electrodes. The change of electrode gap for the plasma leads to a transition of electron heating mode along the axial direction. In order to characterize the electron behavior further, we introduce the ratio of the cold electron density to hot electron density (α) and the ratio of cold electron temperature to hot electron temperature (β). The ratios also show the proportional distributions of the cold and hot electron populations. The electrode gap has a great influences on α while little influence on β. When the discharge gap between electrodes varies from 20 to 40 mm, α changes from 0.2 to 0.5 while β has the same trend. Spatial distributions of electron density and temperature with low and high energy are also discussed.[1] Xu D S, Zou S, Xin Y, Su X D, Wang X S 2014 Chin. Phys. B 23 065201
[2] Conrads H, Schmidt M 2000 Plasma sources Sci. Technol. 9 441
[3] Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207
[4] Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003
[5] Jiang W, Wang H Y, Zhao S X, Wang Y N 2009 J. Phys. D 42 102005
[6] Fernández Palop J I, Ballesteros J, Colomer V, Hernández M A 1995 Rev. Sci. Instrum. 66 4625
[7] Bang J Y, Chung C W 2010 Phys. Plasmas 17 123506
[8] Chung T H 2006 Phys. Plasmas 13 024501
[9] Wang X, Hershkowitz N 2006 Phys. Plasmas 13 053503
[10] Godyak V A, Popov O A 1985 J. Appl. Phys. 57 53
[11] Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996
[12] Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001
[13] You S J, Ahn S K, Chang H Y 2006 Appl. Phys. Lett. 89 171502
[14] Turner M M, Hopkins M B 1992 Phys. Rev. Lett. 69 3511
[15] Turner M M 1995 Phys. Rev. Lett. 75 1312
[16] Kaganovich I D 2002 Phys. Rev. Lett. 89 265006
[17] You S J, Chung C W, Chang H Y 2005 Appl. Phys. Lett. 87 041501
[18] Park G Y, You S J, Iza F, Lee J K 2007 Phys. Rev. Lett. 98 085003
[19] Liu Y X, Zhang Q Z, Wang Y N 2011 Phys. Rev. Lett. 107 055002
[20] Ahn S K, You S J, Chang H Y 2006 Appl. Phys. Lett. 89 161506
[21] Suremdra M, Graves D B 1991 Appl. Phys. Lett. 59 2091
[22] Liu Y X, Gao F, Liu J, Wang Y N 2014 J. Appl. Phys. 116 043303
[23] Sansonnens L, Strahm B, Derendinger L, Howling A A, Hollenstein C, Ellert C, Schmitt J P M 2005 J. Vac. Sci. Technol. A 23 922
[24] Sansonnens L, Howling A A, Hollenstein C 2006 Plasma sources Sci. Technol. 15 302
[25] Hong B S, Xin Y, Zou S, Xu D S, Yu Y Q 2013 Acta Phys. Sin. 62 115202 (in Chinese) [洪布双, 辛煜, 邹帅, 徐东升, 虞一青 2013 62 115202]
[26] Lee M H, Lee H C, Chung C W 2010 Phys. Rev. Lett. 81 046402
[27] Lee H C, Chung C W 2012 Phys. Plasmas 19 033514
[28] Godyak V A, Piejak R B 1993 Appl. Phys. Lett. 63 3137
-
[1] Xu D S, Zou S, Xin Y, Su X D, Wang X S 2014 Chin. Phys. B 23 065201
[2] Conrads H, Schmidt M 2000 Plasma sources Sci. Technol. 9 441
[3] Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207
[4] Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003
[5] Jiang W, Wang H Y, Zhao S X, Wang Y N 2009 J. Phys. D 42 102005
[6] Fernández Palop J I, Ballesteros J, Colomer V, Hernández M A 1995 Rev. Sci. Instrum. 66 4625
[7] Bang J Y, Chung C W 2010 Phys. Plasmas 17 123506
[8] Chung T H 2006 Phys. Plasmas 13 024501
[9] Wang X, Hershkowitz N 2006 Phys. Plasmas 13 053503
[10] Godyak V A, Popov O A 1985 J. Appl. Phys. 57 53
[11] Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996
[12] Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001
[13] You S J, Ahn S K, Chang H Y 2006 Appl. Phys. Lett. 89 171502
[14] Turner M M, Hopkins M B 1992 Phys. Rev. Lett. 69 3511
[15] Turner M M 1995 Phys. Rev. Lett. 75 1312
[16] Kaganovich I D 2002 Phys. Rev. Lett. 89 265006
[17] You S J, Chung C W, Chang H Y 2005 Appl. Phys. Lett. 87 041501
[18] Park G Y, You S J, Iza F, Lee J K 2007 Phys. Rev. Lett. 98 085003
[19] Liu Y X, Zhang Q Z, Wang Y N 2011 Phys. Rev. Lett. 107 055002
[20] Ahn S K, You S J, Chang H Y 2006 Appl. Phys. Lett. 89 161506
[21] Suremdra M, Graves D B 1991 Appl. Phys. Lett. 59 2091
[22] Liu Y X, Gao F, Liu J, Wang Y N 2014 J. Appl. Phys. 116 043303
[23] Sansonnens L, Strahm B, Derendinger L, Howling A A, Hollenstein C, Ellert C, Schmitt J P M 2005 J. Vac. Sci. Technol. A 23 922
[24] Sansonnens L, Howling A A, Hollenstein C 2006 Plasma sources Sci. Technol. 15 302
[25] Hong B S, Xin Y, Zou S, Xu D S, Yu Y Q 2013 Acta Phys. Sin. 62 115202 (in Chinese) [洪布双, 辛煜, 邹帅, 徐东升, 虞一青 2013 62 115202]
[26] Lee M H, Lee H C, Chung C W 2010 Phys. Rev. Lett. 81 046402
[27] Lee H C, Chung C W 2012 Phys. Plasmas 19 033514
[28] Godyak V A, Piejak R B 1993 Appl. Phys. Lett. 63 3137
计量
- 文章访问数: 5642
- PDF下载量: 210
- 被引次数: 0